Skip to main content

Brachypodium distachyon Long Noncoding RNAs: Genome-Wide Identification and Expression Analysis

  • Protocol
  • First Online:
Brachypodium Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1667))

Abstract

Recent advances in high throughput sequencing technology have revealed a pervasive and complex transcriptional activity of all eukaryotic genomes and have allowed the identification and characterization of several classes of noncoding RNAs (ncRNAs) with key roles in various biological processes. Among ncRNAs, long ncRNAs (lncRNAs) are transcripts typically longer than 200 nucleotides whose members tend to be expressed at low levels, show a lack of phylogenetic conservation and exhibit tissue-specific, cell-specific, or stress-responsive expression profiles.

Although a large set of lncRNAs has been identified both in animal and plant systems, the regulatory roles of lncRNAs are only beginning to be recognized and the molecular basis of lncRNA mediated gene regulation remains largely unexplored, particularly in plants.

Here, we describe an efficient methodology to identify long noncoding RNAs using next-generation sequencing data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Martin LBB, Fei Z, Giovannoni JJ et al (2013) Catalyzing plant science research with RNA-seq. Front Plant Sci. doi:10.3389/fpls.2013.00066

  2. Kim ED, Sung S (2012) Long noncoding RNA: unveiling hidden layer of gene regulatory networks. Trends Plant Sci 17:16–21

    Article  CAS  PubMed  Google Scholar 

  3. Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long Intronic noncoding RNA. Science 331:76–79

    Article  CAS  PubMed  Google Scholar 

  4. Swiezewski S, Liu F, Magusin A et al (2009) Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462:799–802

    Article  CAS  PubMed  Google Scholar 

  5. Ding J, Lu Q, Ouyang Y et al (2012) A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci 109:2654–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Franco-Zorrilla JM, Valli A, Todesco M et al (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  CAS  PubMed  Google Scholar 

  7. Wang H, Chung PJ, Liu J et al (2014) Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis. Genome Res 24:444–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang YC, Liao JY, Li ZY et al (2014) Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biol 15:512

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li L, Eichten SR, Shimizu R et al (2014) Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol 15:R40

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhu B, Yang Y, Li R et al (2015) RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening. J Exp Bot 66:4483–4495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Trapnell C, Roberts A, Goff L et al (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat. Protoc 7:562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cabili MN, Trapnell C, Goff L et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet journal 17:10–12

    Article  Google Scholar 

  14. Del Fabbro C, Scalabrin S, Morgante M et al (2013) An extensive evaluation of read trimming effects on Illumina NGS data analysis. PLoS One. doi:10.1371/journal.pone.0085024

  15. Housman G., Ulitsky I. (2015) Methods for distinguishing between protein-coding and long noncoding RNAs and the elusive biological purpose of translation of translation of long noncoding RNAs. BBA-Gene Regul Mech http://dxdoiorg/101016/jbbagrm201507017 Available online 8 August 2015

  16. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinform 10:421

    Article  Google Scholar 

  17. Kong L, Zhang Y, Ye ZQ et al (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35:W345–W349

    Article  PubMed  PubMed Central  Google Scholar 

  18. Prüfer K, Stenzel U, Dannemann M et al (2008) PatMaN: rapid alignment of short sequences to large databases. Bioinformatics 24:1530–1531

    Article  PubMed  PubMed Central  Google Scholar 

  19. Anders S, Pyl PT, Huber W (2015) HTSeq—a python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    Article  CAS  PubMed  Google Scholar 

  20. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  21. Kodama Y, Shumway M, Leinonen R, International Nucleotide Sequence Database Collaboration (2012) The sequence read archive: explosive growth of sequencing data. Nucleic Acids Res 40:D54–D56

    Article  CAS  PubMed  Google Scholar 

  22. International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  23. Finn RD, Bateman A, Clements J et al (2014) The Pfam protein families database. Nucleic Acids Res. doi:10.1093/nar/gkt1223

  24. Nawrocki EP, Burge SW, Bateman A et al (2014) Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. doi:10.1093/nar/gku1063

  25. Nakano M, Nobuta K, Vemaraju K et al (2006) Plant MPSS databases: signature-based transcriptional resources for analyses of mRNA and small RNA. Nucleic Acids Res 34:D731–D735

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the International Doctoral Programme in Agrobiodiversity of Scuola Superiore Sant’Anna ( http://www.santannapisa.it/ ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Bertolini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

De Quattro, C., Mica, E., Pè, M.E., Bertolini, E. (2018). Brachypodium distachyon Long Noncoding RNAs: Genome-Wide Identification and Expression Analysis. In: Sablok, G., Budak, H., Ralph, P. (eds) Brachypodium Genomics. Methods in Molecular Biology, vol 1667. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7278-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7278-4_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7276-0

  • Online ISBN: 978-1-4939-7278-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics