Skip to main content

Computational Methods for Predicting Effectors in Rust Pathogens

  • Protocol
  • First Online:
Wheat Rust Diseases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1659))

Abstract

Lower costs and improved sequencing technologies have led to a large number of high-quality rust pathogen genomes and deeper characterization of gene expression profiles during early and late infection stages. However, the set of secreted proteins expressed during infection is too large for experimental investigations and contains not only effectors but also proteins that play a role in niche colonization or in fighting off competing microbes. Therefore, accurate computational prediction is essential for identifying high-priority rust effector candidates from secretomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leonard KJ, Szabo LJ (2005) Stem rust of small grains and grasses caused by Puccinia graminis. Mol Plant Pathol 6(2):99–111

    Article  PubMed  Google Scholar 

  2. Kamoun S (2006) A catalogue of the effector secretome of plant pathogenic oomycetes. Annu Rev Phytopathol 44:41–60

    Article  CAS  PubMed  Google Scholar 

  3. Figueroa M, Upadhyaya NM, Sperschneider J, Park RF, Szabo LJ, Steffenson B, Ellis JG, Dodds PN (2016) Changing the game: using integrative genomics to probe virulence mechanisms of the stem rust pathogen Puccinia graminis f. sp. tritici. Front Plant Sci 7:205

    Article  PubMed  PubMed Central  Google Scholar 

  4. Petre B, Joly DL, Duplessis S (2014) Effector proteins of rust fungi. Front Plant Sci 5:416

    PubMed  PubMed Central  Google Scholar 

  5. Testa AC, Hane JK, Ellwood SR, Oliver RP (2015) CodingQuarry: highly accurate hidden Markov model gene prediction in fungal genomes using RNA-seq transcripts. BMC Genomics 16:170

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M (2016) BRAKER1: unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 32(5):767–769

    Article  CAS  PubMed  Google Scholar 

  7. Stergiopoulos I, de Wit PJ (2009) Fungal effector proteins. Annu Rev Phytopathol 47:233–263

    Article  CAS  PubMed  Google Scholar 

  8. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37(Web Server issue):W202–W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786

    Article  CAS  PubMed  Google Scholar 

  10. Klee EW, Ellis LB (2005) Evaluating eukaryotic secreted protein prediction. BMC Bioinformatics 6:256

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sperschneider J, Williams AH, Hane JK, Singh KB, Taylor JM (2015) Evaluation of secretion prediction highlights differing approaches needed for Oomycete and fungal effectors. Front Plant Sci 6:1168

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lonsdale A, Davis MJ, Doblin MS, Bacic A (2016) Better than nothing? Limitations of the prediction tool secretomeP in the search for Leaderless Secretory Proteins (LSPs) in plants. Front Plant Sci 7:1451

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10(1):1–6

    Article  CAS  PubMed  Google Scholar 

  14. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340(4):783–795

    Article  PubMed  Google Scholar 

  15. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300(4):1005–1016

    Article  CAS  PubMed  Google Scholar 

  16. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580

    Article  CAS  PubMed  Google Scholar 

  17. Kall L, Krogh A, Sonnhammer EL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338(5):1027–1036

    Article  CAS  PubMed  Google Scholar 

  18. Duplessis S, Cuomo CA, Lin YC, Aerts A, Tisserant E, Veneault-Fourrey C, Joly DL, Hacquard S, Amselem J, Cantarel BL, Chiu R, Coutinho PM, Feau N, Field M, Frey P, Gelhaye E, Goldberg J, Grabherr MG, Kodira CD, Kohler A, Kues U, Lindquist EA, Lucas SM, Mago R, Mauceli E, Morin E, Murat C, Pangilinan JL, Park R, Pearson M, Quesneville H, Rouhier N, Sakthikumar S, Salamov AA, Schmutz J, Selles B, Shapiro H, Tanguay P, Tuskan GA, Henrissat B, Van de Peer Y, Rouze P, Ellis JG, Dodds PN, Schein JE, Zhong S, Hamelin RC, Grigoriev IV, Szabo LJ, Martin F (2011) Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci U S A 108(22):9166–9171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lorrain C, Hecker A, Duplessis S (2015) Effector-mining in the poplar rust fungus Melampsora larici-populina secretome. Front Plant Sci 6:1051

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sperschneider J, Dodds PN, Gardiner DM, Manners JM, Singh KB, Taylor JM (2015) Advances and challenges in computational prediction of effectors from plant pathogenic fungi. PLoS Pathog 11(5):e1004806

    Article  PubMed  PubMed Central  Google Scholar 

  21. Anderson C, Khan MA, Catanzariti AM, Jack CA, Nemri A, Lawrence GJ, Upadhyaya NM, Hardham AR, Ellis JG, Dodds PN, Jones DA (2016) Genome analysis and avirulence gene cloning using a high-density RADseq linkage map of the flax rust fungus, Melampsora lini. BMC Genomics 17:667

    Article  PubMed  PubMed Central  Google Scholar 

  22. Catanzariti AM, Dodds PN, Lawrence GJ, Ayliffe MA, Ellis JG (2006) Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors. Plant Cell 18(1):243–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30(7):1575–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hacquard S, Joly DL, Lin YC, Tisserant E, Feau N, Delaruelle C, Legue V, Kohler A, Tanguay P, Petre B, Frey P, Van de Peer Y, Rouze P, Martin F, Hamelin RC, Duplessis S (2012) A comprehensive analysis of genes encoding small secreted proteins identifies candidate effectors in Melampsora larici-populina (poplar leaf rust). Mol Plant-Microbe Interact 25(3):279–293

    Article  CAS  PubMed  Google Scholar 

  25. Saunders DG, Win J, Cano LM, Szabo LJ, Kamoun S, Raffaele S (2012) Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi. PLoS One 7(1):e29847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Link TI, Lang P, Scheffler BE, Duke MV, Graham MA, Cooper B, Tucker ML, van de Mortel M, Voegele RT, Mendgen K, Baum TJ, Whitham SA (2014) The haustorial transcriptomes of Uromyces appendiculatus and Phakopsora pachyrhizi and their candidate effector families. Mol Plant Pathol 15(4):379–393

    Article  CAS  PubMed  Google Scholar 

  27. Nemri A, Saunders DGO, Anderson C, Upadhyaya N, Win J, Lawrence GJ, Jones DA, Kamoun S, Ellis JG, Dodds PN (2014) The genome sequence and effector complement of the flax rust pathogen Melampsora lini. Front Plant Sci 5:98

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11(8):539–548

    Article  CAS  PubMed  Google Scholar 

  29. Dodds PN, Lawrence GJ, Catanzariti AM, Teh T, Wang CI, Ayliffe MA, Kobe B, Ellis JG (2006) Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc Natl Acad Sci U S A 103(23):8888–8893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barrett LG, Thrall PH, Dodds PN, van der Merwe M, Linde CC, Lawrence GJ, Burdon JJ (2009) Diversity and evolution of effector loci in natural populations of the plant pathogen Melampsora lini. Mol Biol Evol 26(11):2499–2513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sperschneider J, Ying H, Dodds P, Gardiner D, Upadhyaya NM, Singh K, Manners JM, Taylor J (2014) Diversifying selection in the wheat stem rust fungus acts predominantly on pathogen-associated gene families and reveals candidate effectors. Front Plant Sci 5:372

    Article  PubMed  PubMed Central  Google Scholar 

  32. Stukenbrock EH, Bataillon T (2012) A population genomics perspective on the emergence and adaptation of new plant pathogens in agro-ecosystems. PLoS Pathog 8(9):e1002893

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kryazhimskiy S, Plotkin JB (2008) The population genetics of dN/dS. PLoS Gen 4(12):e1000304

    Article  Google Scholar 

  34. Sperschneider J, Gardiner DM, Dodds PN, Tini F, Covarelli L, Singh KB, Manners JM, Taylor JM (2016) EffectorP: predicting fungal effector proteins from secretomes using machine learning. New Phytol 210(2):743–761

    Article  CAS  PubMed  Google Scholar 

  35. Petre B, Lorrain C, Saunders DG, Win J, Sklenar J, Duplessis S, Kamoun S (2015) Rust fungal effectors mimic host transit peptides to translocate into chloroplasts. Cell Microbiol 18:453–465

    Article  PubMed  Google Scholar 

  36. Petre B, Saunders DG, Sklenar J, Lorrain C, Krasileva KV, Win J, Duplessis S, Kamoun S (2016) Heterologous expression screens in Nicotiana benthamiana identify a candidate effector of the wheat yellow rust pathogen that associates with processing bodies. PLoS One 11(2):e0149035

    Article  PubMed  PubMed Central  Google Scholar 

  37. Petre B, Saunders DG, Sklenar J, Lorrain C, Win J, Duplessis S, Kamoun S (2015) Candidate effector proteins of the rust pathogen Melampsora larici-populina target diverse plant cell compartments. Mol Plant-Microbe Interact 28(6):689–700

    Article  CAS  PubMed  Google Scholar 

  38. Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35(Web Server issue):W585–W587

    Article  PubMed  PubMed Central  Google Scholar 

  39. Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8(5):978–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sperschneider J, Catanzariti A-M, DeBoer K, Petre B, Gardiner DM, Singh KB, Dodds PN, Taylor JM (2017) LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell. Sci Rep 7:44598

    Google Scholar 

  41. Kemen E, Kemen AC, Rafiqi M, Hempel U, Mendgen K, Hahn M, Voegele RT (2005) Identification of a protein from rust fungi transferred from haustoria into infected plant cells. Mol Plant-Microbe Interact 18(11):1130–1139

    Article  CAS  PubMed  Google Scholar 

  42. Cock PJ, Pritchard L (2014) Galaxy as a platform for identifying candidate pathogen effectors. Methods Mol Biol 1127:3–15

    Article  PubMed  Google Scholar 

  43. Reid AJ, Jones JT (2014) Bioinformatic analysis of expression data to identify effector candidates. Methods Mol Biol 1127:17–27

    Article  PubMed  Google Scholar 

  44. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. BioTechniques 34(2):374–378

    CAS  PubMed  Google Scholar 

  45. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591

    Article  CAS  PubMed  Google Scholar 

  46. Huerta-Cepas J, Serra F, Bork P (2016) ETE 3: Reconstruction, analysis, and visualization of Phylogenomic data. Mol Biol Evol 33(6):1635–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sievers F, Higgins DG (2014) Clustal Omega, accurate alignment of very large numbers of sequences. Methods Mol Biol 1079:105–116

    Article  CAS  PubMed  Google Scholar 

  48. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang Z, Wong WS, Nielsen R (2005) Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol 22(4):1107–1118

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Sperschneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Sperschneider, J., Dodds, P.N., Taylor, J.M., Duplessis, S. (2017). Computational Methods for Predicting Effectors in Rust Pathogens. In: Periyannan, S. (eds) Wheat Rust Diseases. Methods in Molecular Biology, vol 1659. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7249-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7249-4_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7248-7

  • Online ISBN: 978-1-4939-7249-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics