Skip to main content

NMR and MS Methods for Metabolomics

  • Protocol
  • First Online:
Drug Safety Evaluation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1641))

Abstract

Metabolomics, also often referred as “metabolic profiling,” is the systematic profiling of metabolites in biofluids or tissues of organisms and their temporal changes. In the last decade, metabolomics has become more and more popular in drug development, molecular medicine, and other biotechnology fields, since it profiles directly the phenotype and changes thereof in contrast to other “-omics” technologies. The increasing popularity of metabolomics has been possible only due to the enormous development in the technology and bioinformatics fields. In particular, the analytical technologies supporting metabolomics, i.e., NMR, UPLC-MS, and GC-MS, have evolved into sensitive and highly reproducible platforms allowing the determination of hundreds of metabolites in parallel. This chapter describes the best practices of metabolomics as seen today. All important steps of metabolic profiling in drug development and molecular medicine are described in great detail, starting from sample preparation to determining the measurement details of all analytical platforms, and finally to discussing the corresponding specific steps of data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nicholson JK, Lindon JC, Holmes E (1999) “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189

    Article  CAS  PubMed  Google Scholar 

  2. Dieterle F, Schlotterbeck G, Binder M, Ross A, Suter L, Senn H (2007) Application of metabonomics in a comparative profiling study reveals N-Acetylfelinine excretion as a biomarker for inhibition of the Farnesyl pathway by bisphosphonates. Chem Res Toxicol 20:1291–1299

    Article  CAS  PubMed  Google Scholar 

  3. Markley JL, Brüschweiler R, Edison AS, Eghbalnia HR, Powers R, Raftery D, Wishart DS (2017) The future of NMR-based metabolomics. Curr Opin Biotechnol 43:34–40

    Article  CAS  PubMed  Google Scholar 

  4. Dieterle F, Riefke B, Schlotterbeck G, Ross A, Senn H, Amberg A (2011) NMR and MS methods for metabonomics. Methods Mol Biol 691:385–415

    Article  CAS  PubMed  Google Scholar 

  5. Wishart DS (2007) Proteomics and the human metabolome project. Expert Rev Proteomics 4:333–335

    Article  CAS  PubMed  Google Scholar 

  6. Bollard ME, Holmes E, Lindon JC, Mitchell SC, Branstetter D, Zhang W, Nicholson JK (2001) Investigations into biochemical changes due to diurnal variation and estrus cycle in female rats using high resolution 1H NMR spectroscopy of urine and pattern recognition. Anal Biochem 295:194–202

    Article  CAS  PubMed  Google Scholar 

  7. Bell JD, Sadler PJ, Morris VC, Levander OA (1991) Effect of aging and diet on proton NMR spectra of rat urine. Magn Reson Med 17:414–422

    Article  CAS  PubMed  Google Scholar 

  8. Phipps AN, Steward J, Wright B, Wilson ID (1998) Effect on diet on urinary excretion of hippuric acid and other dietary-derived aromatics in the rat. A complex interaction between diet, gut microflora and substrate specificity. Xenobiotica 28:527–537

    Article  CAS  PubMed  Google Scholar 

  9. Bollard ME, Stanley EG, Lindon JC, Nicholson JK, Holmes E (2005) NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR Biomed 18:143–162

    Article  CAS  PubMed  Google Scholar 

  10. Griffin JL, Walker LA, Garrod S, Holmes E, Shore RF, Nicholson JK (2000) NMR spectroscopy based metabonomic studies on the comparative biochemistry of the kidney and urine of the blank vole (Clethrionomys glareolus), wood mouse (Apodemus sylvaticus), white toothed shrew (Crocidura suaveolens), and the laboratory rat. Comp Biochem Physiol 127:357–367

    Article  CAS  Google Scholar 

  11. Van Dorsten FA, Daykin CA, Mulder TPJ, Duynhoven JPM (2006) Metabonomic approach to determine metabolic differences between green tea and black tea consumption. J Agric Food Chem 54:6929–6938

    Article  PubMed  Google Scholar 

  12. Stella C, Beckwith-hall B, Cloarec O, Lindon JC, Powell J, van der Ouderaa F, Bingham S, Cross AJ, Nicholson JK (2006) Susceptibility of human metabolic phenotype to dietary modulation. J Proteome Res 5:2780–2788

    Google Scholar 

  13. Solanky KS, Bailey NJC, Beckwith-Hall B, Davies A, Bingham S, Holmes E, Nicholson JK, Cassidy A (2003) Application of biofluid 1H nuclear resonance-based metabonomic technique for the analysis of biochemical effects of dietary isoflavones on human plasma profiles. Anal Biochem 323:197–204

    Article  CAS  PubMed  Google Scholar 

  14. Beckonert O, Keun HC, Ebbels TMD, bundy J, Holmes E, Lindon JC, Nicholson JK (2006) Metabolic profiling and metabonomics procedures for NMR spectroscopy or urine, plasma and serum and tissue extracts. Nat Protoc 2(11):2692–2703

    Article  Google Scholar 

  15. Teahan O, Gamble S, Holmes E, Waxman J, Nicholson JK, Bevan C, Keun HC (2006) Impact of analytical bias in metabonomic studies of human blood serum and plasma. Anal Chem 78(13):4307–4318

    Article  CAS  PubMed  Google Scholar 

  16. Maher AD, Zirah SF, Holmes E, Nicholson JK (2007) Experimental and analytical variation in human urine in 1H NMR spectroscopy-based metabolic phenotyping studies. Anal Chem 79(14):5204–5211

    Article  CAS  PubMed  Google Scholar 

  17. European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes Strasbourg, 18.III.1986 Text amended according to the provisions of the Protocol (ETS No. 170) as of its entry into force on 2 December 2005

    Google Scholar 

  18. EEC Directive. Council Directive of November 24, 1986 on the approximation of laws, regulations and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes 86/609/EEC. Official Journal of the European Community No. L 358 of 18 December 1986

    Google Scholar 

  19. Good Laboratory Practice Regulations for Nonclinical Laboratory Studies of the United States Food and Drug Administration (21 CFR Part 58)

    Google Scholar 

  20. Morton DB, Abbot D, Barclay R, Close BS, Ewbank R, Gask D, Heath M, Mattic S, Poole T, Seamer J, Southee J, Thompson A, Trussell B, West C, Jennings M (1993) Removal of blood from laboratory mammals and birds. Lab Anim 27:1–22

    Article  Google Scholar 

  21. Diehl K-H, Hull R, Morton D, Pfister R, Rabemampianina Y, Smith D, Vidal J-M, van den Vorstenbosch C (2001) A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol 21:15–23

    Article  CAS  PubMed  Google Scholar 

  22. Robertson DG, Reily MD, Lindon JC, Holmes E, Nicholson JK (2002) Metabonomic technology as a tool for rapid throughput in vivo toxicity screening. In: van den Heuvel JP, Perdew GH, Mattes WB, Greenlee WF (eds) Comprehensive toxicology, vol 14. Elsevier, Amsterdam, pp 583–610

    Google Scholar 

  23. Nicholls A, Nicholson JK, Haselden JN, Waterfield CJ (2000) A metabonomics approach to the investigation of drug-induced phospholipidosis: an NMR spectroscopy and pattern recognition study. Biomarkers 5(6):410–423

    Article  CAS  Google Scholar 

  24. Ellis JK, Athersuch TJ, Cavill R, Radford R, Slattery C, Jennings P, McMorrow T, Ryan MP, Ebbels TM, Keun HC (2011) Metabolic response to low-level toxicant exposure in a novel renal tubule epithelial cell system. Mol BioSyst 7(1):247–257

    Article  CAS  PubMed  Google Scholar 

  25. Wenzel C, Riefke B, Gruendemann S, Krebs A, Christian S, Prinz F, Osterland M, Golfier S, Räse S, Ansari N, Esner M, Bickle M, Pampaloni F, Mattheyer C, Stelzer EH, Parczyk K, Prechtl S, Steigemann P (2014) 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions. Exp Cell Res 323(1):131–143

    Article  CAS  PubMed  Google Scholar 

  26. Römisch-Margl W, Prehn C, Bogumil R, Röhring C, Suhre K, Adamski J (2012) Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics 8:133

    Article  Google Scholar 

  27. Lindon JC, Nicholson JK, Holmes E, Everett JER (2000) Metabonomics: metabolic processes studied by NMR spectroscopy of biofluids. Concepts Magn Reson 12:289–320

    Article  CAS  Google Scholar 

  28. Keun HC, Ebbels TMD, Antti H, Bollard ME, Beckonert O, Schlotterbeck G, Senn H, Niederhauser U, Holmes E, Lindon JC, Nicholson JK (2002) Analytical reproducibility in 1H NMR-based metabonomic urinalysis. Chem Res Toxicol 15:1380–1386

    Article  CAS  PubMed  Google Scholar 

  29. Want EJ, O’Maille G, Smith CA, Brandon TR, Uritboonthai W, Qin C, Trauger SA, Siuzdak G (2006) Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal Chem 78:743–752

    Article  CAS  PubMed  Google Scholar 

  30. Boernsen KO, Gatzek S, Imbert G (2005) Controlled protein precipitation in combination with chip-based nanospray infusion mass spectrometry. An approach for metabolomics profiling of plasma. Anal Chem 77:7255–7264

    Article  CAS  PubMed  Google Scholar 

  31. A J, Trygg J, Gullberg J, Johansson AI, Jonsson P, Antti H, Marklund SL, Moritz T (2005) Extraction and GC/MS analysis of the human blood plasma Metabolome. Anal Chem 77:8086–8094

    Article  CAS  PubMed  Google Scholar 

  32. Wagner S, Scholz K, Sieber M, Kellert M, Voelkel W (2007) Tools in metabolomics: an integrated validation approach for LC-MS metabolic profiling of mercapturic acid in human urine. Anal Chem 79:2918–2926

    Article  CAS  PubMed  Google Scholar 

  33. Waybright TJ, Van QN, Muschik GM, Conrads TP, Veenstra TD, Issaq HJ (2006) LC-MS in metabonomics: optimization of experimental conditions for the analysis of metabolites in human urine. J Liq Chromatogr Relat Technol 29:2475–2497

    Article  CAS  Google Scholar 

  34. Wilson ID, Plumb R, Granger J, Major H, Williams R, Lenz EM (2005) HPLC-MS-based methods for the study of metabolomics. J Chromatogr B 817:67–76

    Article  CAS  Google Scholar 

  35. Ernst RR, Bodenhausen G, Wokaun A (1990) Principles of nuclear magnetic resonance in one and two dimensions. Oxford University Press, Oxford

    Google Scholar 

  36. Goldman M (1991) Quantum description of high-resolution NMR in liquids. Oxford University Press, Oxford

    Google Scholar 

  37. Kovacs H, Moskau D, Spraul M (2005) Cryogenically cooled probes – a leap in NMR technology. Prog Nucl Magn Reson Spectrosc 46:131–155

    Article  CAS  Google Scholar 

  38. Prince WS (1999) Water signal suppression in NMR spectroscopy. Annu Rep NMR Spectrosc 38:289–354

    Article  Google Scholar 

  39. Potts BC, Deese AJ, Stevens GJ, Reily MD, Robertson DG, Theiss J (2001) NMR of biofluids and pattern recognition: assessing the impact of NMR parameters on the principal component analysis of urine from rat and mouse. J Pharm Biomed Anal 26:463–476

    Article  CAS  PubMed  Google Scholar 

  40. Schlotterbeck G, Ross A, Dieterle F, Senn H (2006) Metabolic profiling technologies for biomarker discovery in biomedicine and drug development. Pharmacogenomics 7:1055–1075

    Article  CAS  PubMed  Google Scholar 

  41. Ross A, Schlotterbeck G, Dieterle F, Senn H (2007) NMR spectroscopy techniques for application in metabonomics. In: Lindon JC, Nicholson JK, Holmes E (eds) The handbook of metabonomics and metabolomics. Elsevier, Amsterdam, pp 55–112

    Chapter  Google Scholar 

  42. Chen JH, Singer S (2007) High-resolution magic angle spinning NMR spectroscopy. In: Lindon JC, Nicholson JK, Holmes E (eds) The handbook of metabonomics and metabolomics. Elsevier, Amsterdam, pp 113–148

    Chapter  Google Scholar 

  43. Keun HC, Beckonert O, Griffin JL, Richter C, Moskau D, Lindon JC, Nicholson JK (2002) Cryogenic probe 13C NMR spectroscopy of urine for metabonomic studies. Anal Chem 74:4588–4593

    Article  CAS  PubMed  Google Scholar 

  44. Boros LG, Brackett DJ, Harrigan GG (2003) Metabolic biomarker and kinase drug target discovery in cancer using stable isotope-based dynamic metabolic profiling (SIDMAP). Curr Cancer Drug Targets 3:445–453

    Article  CAS  PubMed  Google Scholar 

  45. Ben-Yoseph O, Badar-Goffer RS, Morris PG, Bachelard HS (1993) Glycerol 3-phosphate and lactate as indicators of the cerebral cytoplasmic redox state in severe and mild hypoxia respectively: a 13C- and 31P-NMR study. Biochem J 291:915–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hoult DI (1976) Solvent peak saturation with single phase and quadrature Fourier transformation. J Magn Reson 21:337–347

    CAS  Google Scholar 

  47. Kumar A, Ernst RR, Wüthrich K (1980) A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun 95:1–6

    Article  CAS  PubMed  Google Scholar 

  48. Ogg RJ, Kingsley PB, Taylor JS (1994) WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. J Magn Reson 104B:1–10

    Article  Google Scholar 

  49. Lenz EM, Bright J, Wilson ID, Morgan SR, Nash AFP (2003) A 1H NMR-based metabonomic study of urine and plasma samples obtained from healthy human subjects. J Pharm Biomed Anal 33:1103–1115

    Article  CAS  PubMed  Google Scholar 

  50. Meiboom S, Gill D (1958) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Rev Sci Instrum 29:688–691

    Article  CAS  Google Scholar 

  51. Gibbs SJ, Johnson CS Jr (1991) A PFG NMR experiment for accurate diffusion and flow studies in the presence of eddy currents. J Magn Reson 93:395–402

    Google Scholar 

  52. Wider G, Dötsch V, Wüthrich K (1994) Self-compensating pulsed magnetic-field gradients for short recovery times. J Magn Reson 108A:255–258

    Article  Google Scholar 

  53. Morris KF, Johnson CS Jr (1992) Diffusion-ordered two-dimensional nuclear magnetic resonance spectroscopy. J Am Chem Soc 114:3139–3141

    Article  CAS  Google Scholar 

  54. Griffin JL, Williams HJ, Sang E, Nicholson JK (2001) Abnormal lipid profile of dystrophic cardiac tissue as demonstrated by one- and two-dimensional magic-angle spinning 1H NMR spectroscopy. Magn Reson Med 46:249–255

    Article  CAS  PubMed  Google Scholar 

  55. Garrod S, Humpfer E, Spraul M et al (1999) High-resolution magic angle spinning 1H NMR spectroscopic studies on intact rat renal cortex and medulla. Magn Reson Med 41:1108–1118

    Article  CAS  PubMed  Google Scholar 

  56. Dumas ME, Canlet C, André F, Vercauteren J, Paris A (2002) Metabonomic assessment of physiological disruptions using 1H-13C HMBC-NMR spectroscopy combined with pattern recognition procedures performed on filtered variables. Anal Chem 74:2261–2273

    Article  CAS  PubMed  Google Scholar 

  57. Günther H (1992) NMR spectroscopy. Wiley, New York

    Google Scholar 

  58. Holmes E, Foxall PJD, Spraul M, Farrant RD, Nicholson JK, Lindon JC (1997) 750 MHz 1H NMR spectroscopy characterization of the complex metabolic pattern of urine from patients with inborn errors of metabolism: 2-hydroxyglutaric aciduria and maple syrup urine disease. J Pharm Biomed Anal 15:1647–1659

    Article  CAS  PubMed  Google Scholar 

  59. Sweatman BC, Farrant RD, Holmes E, Ghauri FY, Nicholson JK, Lindon JC (1993) 600 MHz 1H-NMR spectroscopy of human cerebrospinal fluid: effects of sample manipulation and assignment of resonances. J Pharm Biomed Anal 11:651–664

    Article  CAS  PubMed  Google Scholar 

  60. Lynch MJ, Masters J, Pryor JP, Lindon JC, Spraul M, Foxall PJD, Nicholson JK (1994) Ultra high field NMR spectroscopic studies on human seminal fluid, seminal vesicle and prostatic secretions. J Pharm Biomed Anal 12:19–25

    Article  Google Scholar 

  61. Nicholson JK, Foxall PJD (1996) 750 MHz 1H and 1H-l3C NMR spectroscopy of human blood plasma. Anal Chem 67:793–811

    Article  Google Scholar 

  62. Viant MR (2003) Improved methods for the acquisition and interpretation of NMR metabolomic data. Biochem Biophys Res Commun 310:943–948

    Article  CAS  PubMed  Google Scholar 

  63. Bax A, Davis DG (1985) MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J Magn Reson 65:355–360

    CAS  Google Scholar 

  64. Bax A, Freeman R (1981) Investigation of complex networks of spin-spin coupling by two-dimensional NMR. J Magn Reson 44:542–561

    CAS  Google Scholar 

  65. Derome A, Williamson M (1990) Rapid-pulsing artifacts in double-quantum-filtered COSY. J Magn Reson 88:177–185

    Google Scholar 

  66. Ancian B, Bourgeois I, Dauphin JF, Shaw AA (1997) Artifact-free pure absorption PFG-enhanced DQF-COSY spectra including a gradient pulse in the evolution period. J Magn Reson 125A:348–354

    Article  Google Scholar 

  67. Nicholls AW, Holmes E, Lindon JC et al (2001) Metabonomic investigations into hydrazine toxicity in the rat. Chem Res Toxicol 14:975–987

    Article  CAS  PubMed  Google Scholar 

  68. Liu M, Nicholson JK, Lindon JC (1996) High-resolution diffusion and relaxation edited one- and two-dimensional 1H NMR spectroscopy of biological fluids. Anal Chem 68:3370–3376

    Article  CAS  PubMed  Google Scholar 

  69. Hoch JC, Stern AS (1997) NMR data processing. Wiley, New York

    Google Scholar 

  70. Traficante DD, Rajabzadeh M (2000) Optimum window function for sensitivity enhancement of NMR signals. Concepts Magn Reson 12:83–101

    Article  Google Scholar 

  71. Lefebvre B, Golotvin S, Schoenbachler L, Beger R, Price P, Megyesi J, Safirstein R (2004) Intelligent bucketing for metabonomics – Part 1, Poster. http://www.acdlabs.com/download/publ/2004/enc04/intelbucket.pdf

  72. Forshed J, Schuppe-Koistinen I, Jacobssen SP (2003) Anal Chim Acta 487:189

    Article  CAS  Google Scholar 

  73. Stoyanova R, Nicholls AW, Nicholson JK, Lindon JC, Brown TR (2004) Automatic alignment of individual peaks in large high-resolution spectral data sets. J Magn Reson 170:329–335

    Article  CAS  PubMed  Google Scholar 

  74. Cloarec O, Dumas ME, Trygg J, Craig A, Barton RH, Lindon JC, Nicholson JK, Holmes E (2005) Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1H NMR spectroscopic metabonomic studies. Anal Chem 77:517–526

    Article  CAS  PubMed  Google Scholar 

  75. Cloarec O, Dumas ME, Craig A, Barton RH, Trygg J, Hudson J, Blancher C, Gauguier D, Lindon JC, Holmes E, Nicholson J (2005) Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Anal Chem 77:1282–1289

    Article  CAS  PubMed  Google Scholar 

  76. Holmes E, Foxall PJD, Nicholson JK, Neild GH, Brown SM, Beddell CR, Sweatman BC, Rahr E, Lindon JC, Spraul M, Neidig P (1994) Automatic data reduction and pattern recognition methods for analysis of 1H nuclear magnetic resonance spectra of human urine from normal and pathological states. Anal Biochem 220:284–296

    Article  CAS  PubMed  Google Scholar 

  77. Fauler G, Leis HJ, Huber E, Schellauf C, Kerbl R, Urban C, Gleispach H (1994) Determination of homovanillic acid and vanillylmandelic acid in neuroblastoma screening by stable isotope dilution GC-MS. J Mass Spectrom 32:507–514

    Article  Google Scholar 

  78. Encyclopedia.com. Creatinine. http://www.encyclopedia.com/doc/1O39-creatinine.html

  79. Shockcor JP, Holmes E (2002) Metabonomic applications in toxicity screening and disease diagnosis. Curr Top Med Chem 2:35–51

    Article  CAS  PubMed  Google Scholar 

  80. Antti H, Bollard ME, Ebbels T, Keun H, Lindon JC, Nicholson JK, Holmes E (2002) Batch statistical processing of 1H NMR-derived urinary spectral data. J Chemometr 16:461–468

    Article  CAS  Google Scholar 

  81. Keun HC, Ebbels TMD, Antti H, Bollard ME, Beckonert O, Holmes E, Lindon JC, Nicholson JK (2003) Improved analysis of multivariate data by variable stability scaling: application to NMR-based metabolic profiling. Anal Chim Acta 490:265–276

    Article  CAS  Google Scholar 

  82. Brindle JT, Nicholson JK, Schofield PM, Grainger DJ, Holmes E (2003) Application of chemometrics to 1H NMR spectroscopic data to investigate a relationship between human serum metabolic profiles and hypertension. Analyst 128:32–36

    Article  CAS  PubMed  Google Scholar 

  83. Dieterle F, Ross A, Schlotterbeck G, Senn H (2006) Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem 78:4281–4290

    Article  CAS  PubMed  Google Scholar 

  84. Wang G, Hsieh Y, Korfmacher WA (2005) Comparison of atmospheric pressure chemical ionization, electrospray ionization, and atmospheric pressure photoionization for the determination of cyclosporin a in rat plasma. Anal Chem 77:541–548

    Article  CAS  PubMed  Google Scholar 

  85. Want EJ, Nordström A, Morita H, Siuzdak G (2007) From exogenous to endogenous: the inevitable imprint of mass spectrometry in metabolomics. J Proteome Res 6:459–468

    Article  CAS  PubMed  Google Scholar 

  86. Idborg H, Zamani L, Edlund PO, Schuppe-Koistinen I, Jacobsson SP (2005) Metabolic fingerprinting of rat urine by LC/MS Part 1. Analysis by hydrophilic interaction liquid chromatography–electrospray ionization mass spectrometry. J Chromatogr B 828:9–13

    Article  CAS  Google Scholar 

  87. Pham-Tuan H, Kaskavelis L, Daykin CA, Janssen HG (2003) Method development in high-performance liquid chromatography for high-throughput profiling and metabonomic studies of biofluid samples. J Chromatogr B 789:283–301

    Article  CAS  Google Scholar 

  88. Dunn W, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. Trends Anal Chem 24(4):285–294

    Article  CAS  Google Scholar 

  89. Ackermann BL, Hale JE, Duffin KL (2006) The role of mass spectrometry in biomarker discovery and measurement. Curr Drug Metab 7:525–539

    Article  CAS  PubMed  Google Scholar 

  90. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  91. Peña-Alvarez A, Díaz L, Medina A, Labastida C, Capella S, Vera LE (2004) Characterization of three Agave species by gas chromatography and solid-phase microextraction-gas chromatography-mass spectrometry. J Chromatogr A 1027:131–136

    Article  PubMed  Google Scholar 

  92. Le Belle JE, Harris NG, Williams SR, Bhakoo KK (2002) A comparison of cell and tissue extraction techniques using high-resolution 1H-NMR spectroscopy. NMR Biomed 15:37–44

    Article  PubMed  Google Scholar 

  93. Gullberg J, Jonsson P, Nordström A, Sjöström M, Moritz T (2004) Design of experiments: an efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomics studies with gas chromatography/mass spectrometry. Anal Biochem 331:283–295

    Article  CAS  PubMed  Google Scholar 

  94. Schröder NW, Schombel U, Heine H, Göbel UB, Zähringer U, Schumann RR (2003) Acylated cholesteryl galactoside as a novel immunogenic motif in Borrelia burgdorferi sensu stricto. J Biol Chem 278:33645–33653

    Article  PubMed  Google Scholar 

  95. Katajamaa M, Oresic M (2007) Data processing for mass spectrometry-based metabolomics. J Chromatogr A 1158:318–328

    Article  CAS  PubMed  Google Scholar 

  96. Cloarec O, Campbell A, Tseng LH, Braumann U, Spraul M, Scarfe G, Weaver R, Nicholson JK (2007) Virtual chromatographic resolution enhancement in cryoflow LC-NMR experiments via statistical total correlation spectroscopy. Anal Chem 79:3304–3311

    Article  CAS  PubMed  Google Scholar 

  97. Lindon JC, Nicholson JK (1999) NMR spectroscopy of biofluids. In: Webb GA (ed) Annual reports in NMR spectroscopy, vol 38. Academic Press, London, pp 2–78

    Google Scholar 

  98. Weckwerth W, Morgenthal K (2005) Metabolomics: from pattern recognition to biological interpretation. Drug Discov Today 10:1551–1558

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Riefke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Amberg, A. et al. (2017). NMR and MS Methods for Metabolomics. In: Gautier, JC. (eds) Drug Safety Evaluation. Methods in Molecular Biology, vol 1641. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7172-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7172-5_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7170-1

  • Online ISBN: 978-1-4939-7172-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics