Skip to main content

A Color Segmentation-Based Method to Quantify Atherosclerotic Lesion Compositions with Immunostaining

  • Protocol
  • First Online:
The Renin-Angiotensin-Aldosterone System

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1614))

Abstract

There is an increasing recognition that atherosclerotic lesion composition, rather than size, is the determinant of acute events. Immunostaining is a commonly used method to characterize atherosclerotic lesion compositions. Here, we describe a color segmentation-based approach in HSI (hue, saturation, and intensity) color mode, which minimizes subjectivity and produces accurate and consistent quantifications of atherosclerotic lesion compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breslow JL (1996) Mouse models of atherosclerosis. Science 272:685–688

    Article  CAS  PubMed  Google Scholar 

  2. Ishibashi S, Goldstein JL, Brown MS, Herz J, Burns DK (1994) Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest 93:1885–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Plump AS, Smith JD, Hayek T, Aaltosetala K, Walsh A, Verstuyft JG et al (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein-E-deficient mice created by homologous recombination in ES cells. Cell 71:343–353

    Article  CAS  PubMed  Google Scholar 

  4. Zhang SH, Reddick RL, Piedrahita JA, Maeda N (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258:468–471

    Article  CAS  PubMed  Google Scholar 

  5. Daugherty A, Manning MW, Cassis LA (2000) Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest 105:1605–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Daugherty A, Rateri DL, Lu H, Inagami T, Cassis LA (2004) Hypercholesterolemia stimulates angiotensin peptide synthesis and contributes to atherosclerosis through the AT1A receptor. Circulation 110:3849–3857

    Article  CAS  PubMed  Google Scholar 

  7. Wassmann S, Czech T, van Eickels M, Fleming I, Bohm M, Nickenig G (2004) Inhibition of diet-induced atherosclerosis and endothelial dysfunction in apolipoprotein E/angiotensin II type 1A receptor double-knockout mice. Circulation 110:3062–3067

    Article  CAS  PubMed  Google Scholar 

  8. Lu H, Rateri DL, Feldman DL, Charnigo RJ Jr, Fukamizu A, Ishida J et al (2008) Renin inhibition reduces hypercholesterolemia-induced atherosclerosis in mice. J Clin Invest 118:984–993

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Daugherty A, Lu H, Rateri DL, Cassis LA (2008) Augmentation of the renin-angiotensin system by hypercholesterolemia promotes vascular diseases. Future Lipidol 3:625–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu H, Balakrishnan A, Howatt DA, Wu C, Charnigo R, Liau G et al (2012) Comparative effects of different modes of renin angiotensin system inhibition on hypercholesterolaemia-induced atherosclerosis. Br J Pharmacol 165:2000–2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen XC, Lu H, Zhao M, Tashiro K, Cassis LA, Daugherty A (2013) Angiotensin-converting enzyme promotes atherosclerosis through an angiotensin I to angiotensin II pathway involving leukocytes. Arterioscler Thromb Vasc Biol 33:2075–2080

    Article  CAS  PubMed  Google Scholar 

  12. Lu H, Wu C, Howatt DA, Balakrishnan A, Moorleghen JJ, Chen X et al (2016) Angiotensinogen exerts effects independent of angiotensin II. Arterioscler Thromb Vasc Biol 36:256–265

    Article  CAS  PubMed  Google Scholar 

  13. Daugherty A, Cassis L (1999) Chronic angiotensin II infusion promotes atherogenesis in low density lipoprotein receptor -/- mice. Ann N Y Acad Sci 892:108–118

    Article  CAS  PubMed  Google Scholar 

  14. Weiss D, Kools JJ, Taylor WR (2001) Angiotensin II-induced hypertension accelerates the development of atherosclerosis in apoE-deficient mice. Circulation 103:448–454

    Article  CAS  PubMed  Google Scholar 

  15. Imanishi T, Tsujioka H, Ikejima H, Kuroi A, Takarada S, Kitabata H et al (2008) Renin inhibitor aliskiren improves impaired nitric oxide bioavailability and protects against atherosclerotic changes. Hypertension 52:563–572

    Article  CAS  PubMed  Google Scholar 

  16. Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G (2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The heart outcomes prevention evaluation study investigators. N Engl J Med 342:145–153

    Article  CAS  PubMed  Google Scholar 

  17. ONTARGET Investigators, Yusuf S, Teo KK, Pogue J, Dyal L, Copland I et al (2008) Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med 358:1547–1559

    Article  Google Scholar 

  18. Lu H, Rateri DL, Daugherty A (2007) Immunostaining of mouse atherosclerosis lesions. Methods Mol Med 139:77–94

    Article  CAS  PubMed  Google Scholar 

  19. Wu C, Xu Y, Lu H, Howatt DA, Balakrishnan A, Moorleghen JJ et al (2015) Cys18-Cys137 disulfide bond in mouse angiotensinogen does not affect AngII-dependent functions in vivo. Hypertension 65:800–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yiannikouris F, Wang Y, Shoemaker R, Larian N, Thompson J, English VL et al (2015) Deficiency of angiotensinogen in hepatocytes markedly decreases blood pressure in lean and obese male mice. Hypertension 66:836–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu C, Lu H, Cassis LA, Daugherty A (2011) Molecular and pathophysiological features of angiotensinogen: a mini review. N Am J Med Sci (Boston) 4:183–190

    Article  Google Scholar 

  22. Matsusaka T, Niimura F, Shimizu A, Pastan I, Saito A, Kobori H et al (2012) Liver angiotensinogen is the primary source of renal angiotensin II. J Am Soc Nephrol 23:1181–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen XC, Howatt DA, Balakrishnan A, Moorleghen JJ, Wu CQ, Cassis LA et al (2016) Angiotensin-converting enzyme in smooth muscle cells promotes atherosclerosis. Arterioscler Thromb Vasc Biol 36:1085–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Benicky J, Hafko R, Sanchez-Lemus E, Aguilera G, Saavedra JM (2012) Six commercially available angiotensin II AT(1) receptor antibodies are non-specific. Cell Mol Neurobiol 32:1353–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Herrera M, Sparks MA, Alfonso-Pecchio AR, Harrison-Bernard LM, Coffman TM (2013) Response to lack of specificity of commercial antibodies leads to misidentification of angiotensin type-1 receptor protein. Hypertension 61:e32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang G, Chen Y, BilalWaqar A, Han L, Jia M, Xu C et al (2015) Quantitative analysis of rabbit coronary atherosclerosis. Practical techniques utilizing open-source software. Anal Quant Cytol Histol 37:115–122

    Google Scholar 

  27. Vrekoussis T, Chaniotis V, Navrozoglou I, Dousias V, Pavlakis K, Stathopoulos EN et al (2009) Image analysis of breast cancer immunohistochemistry-stained sections using ImageJ: an RGB-based model. Anticancer Res 29:4995–4998

    CAS  PubMed  Google Scholar 

  28. Daugherty A, Whitman SC (2003) Quantification of atherosclerosis in mice. Methods Mol Biol 209:293–309

    PubMed  Google Scholar 

  29. Daugherty A, Lu H, Howatt DA, Rateri DL (2009) Modes of defining atherosclerosis in mouse models: relative merits and evolving standards. Methods Mol Biol 573:1–15

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Congqing Wu is supported by an American Heart Association Postdoctoral fellow award (16POST31140008). The authors’ research work is supported by an Institutional Development Award from the National Institute of General Medical Sciences of the National Institutes of Health under grant number P20 GM103527 and R01 under grant numbers HL107319 and HL133723 from the National Institutes of Health of the United States of America. The content in this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Wu, C., Daugherty, A., Lu, H. (2017). A Color Segmentation-Based Method to Quantify Atherosclerotic Lesion Compositions with Immunostaining. In: Thatcher, S. (eds) The Renin-Angiotensin-Aldosterone System. Methods in Molecular Biology, vol 1614. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7030-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7030-8_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7028-5

  • Online ISBN: 978-1-4939-7030-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics