Skip to main content

3D Stem Cell Niche Engineering via Two-Photon Laser Polymerization

  • Protocol
  • First Online:
3D Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1612))

Abstract

A strategy to modulate the behavior of stem cells in culture is to mimic structural aspects of the native cell–extracellular matrix (ECM) interaction. An important example of such artificial microenvironments for stem cell culture is the so-called “synthetic niche.” Synthetic niches can be defined as polymeric culture systems mimicking at least one aspect of the interactions between stem cells and the extracellular surroundings, including biochemical factors (e.g., the delivery of soluble factors) and/or biophysical factors (e.g., the microarchitecture of the ECM). Most of the currently available approaches for scaffold fabrication, based on self-assembly methods, do not allow for a submicrometer control of the geometrical structure of the substrate, which might play a crucial role in stem cell fate determination. A novel technology that overcomes these limitations is laser two-photon polymerization (2PP). Femtosecond laser 2PP is a mask-less direct laser writing technique that allows manufacturing three dimensional arbitrary microarchitectures using photosensitive materials. Here, we report on the development of an innovative culture substrate, called the “nichoid,” microfabricated in a hybrid organic–inorganic photoresist called SZ2080, to study mesenchymal stem cell mechanobiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kress S, Neumann A, Weyand B et al (2012) Stem cell differentiation depending on different surfaces. Adv Biochem Eng Biotechnol 126:263–283

    CAS  PubMed  Google Scholar 

  2. Nikkhah M, Edalat F, Manoucheri S et al (2012) Engineering microscale topographies to control the cell-substrate interface. Biomaterials 33(21):5230–5246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kraehenbuehl T, Langer R, Ferreira L (2011) Three-dimensional biomaterials for the study of human pluripotent stem cells. Nat Methods 8(9):731–736

    Article  CAS  PubMed  Google Scholar 

  4. Peerani R, Zandstra P (2010) Enabling stem cell therapies through synthetic stem cell niche engineering. J Clin Invest 120(1):60–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Joddar B, Ito Y (2013) Artificial niche substrates for embryonic and induced pluripotent stem cell cultures. J Biotechnol 106(2):218–228

    Article  Google Scholar 

  6. Maruo S, Fourkas J (2008) Recent progress in multiphoton microfabrication. Opt Lett 2(1–2):100–111

    CAS  Google Scholar 

  7. Claeyssens F, Hasan EA, Gaidukeviciute A et al (2009) Three-dimensional biodegradable structures fabricated by two-photon polymerization. Langmuir 25(5):3219–3223

    Article  CAS  PubMed  Google Scholar 

  8. Turunen S, Käpylä E, Terzaki K et al (2011) Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity. Biofabrication 3(4):045002

    Article  CAS  PubMed  Google Scholar 

  9. Ovsianikov A, Malinauskas M, Schlie S et al (2011) Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications. Acta Biomater 7(3):967–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ovsianikov A, Mironov V, Stampfl J et al (2012) Engineering 3D cell-culture matrices: ultiphoton processing technologies for biological and tissue engineering applications. Expert Rev Med Devices 9:613–633

    Article  CAS  PubMed  Google Scholar 

  11. Raimondi MT, Eaton SM, Nava MM et al (2012) Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine. J Appl Biomater Function Mater 10(1):56–66

    Google Scholar 

  12. Danilevicius P, RekŽtyte S, Balciunas E et al (2013) Laser 3D micro-nanofabrication of polymers for tissue engineering applications. Opt Laser Technol 45:518–524

    Article  CAS  Google Scholar 

  13. Correa DS, Tayalia P, Cosendey G et al (2009) Two-photon polymerization for fabricating structures containing the biopolymer chitosan. J Nanosci Nanotechnol 9(10):5845–5849

    Article  CAS  PubMed  Google Scholar 

  14. Malinauskas M, Danilevicius P, Baltriukiene D et al (2010) 3D artificial polymeric scaffolds for stem cell growth fabricated by femtosecond laser. Lithuan J Phys 50(1):75–82

    Article  Google Scholar 

  15. Klein F, Richter B, Striebel T et al (2011) Two-component polymer scaffolds for controlled three-dimensional cell culture. Adv Mater 23(11):1341–1345

    Article  CAS  PubMed  Google Scholar 

  16. Koroleva A, Deiwick A, Nguyen A et al (2015) Osteogenic differentiation of human mesenchymal stem cells in 3-D Zr-Si organic-inorganic scaffolds produced by two-photon polymerization technique. PLoS One 10(2):e0118164

    Article  PubMed  PubMed Central  Google Scholar 

  17. Marino A, Filippeschi C, Genchi GG et al (2014) The Osteoprint: a bioinspired two-photon polymerized 3-D structure for the enhancement of bone-like cell differentiation. Acta Biomater 10(10):4304–4313

    Article  CAS  PubMed  Google Scholar 

  18. Marino A, Filippeschi C, Mattoli V et al (2015) Biomimicry at the nanoscale: current research and perspectives of two-photon polymerization. Nanoscale 7(7):2841–2850

    Article  CAS  PubMed  Google Scholar 

  19. Ovsianikov A, Schlie S, Ngezahayo A et al (2007) Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials. J Tissue Eng Regen Med 1(6):443–449

    Article  CAS  PubMed  Google Scholar 

  20. Psycharakis S, Tosca A, Melissinaki V et al (2011) Tailor-made three-dimensional hybrid scaffolds for cell cultures. Biomed Mater 6(4):045008

    Article  PubMed  Google Scholar 

  21. Tayalia P, Mendonca CR, Baldacchini T et al (2008) 3D cell-migration studies using two-photon engineered polymer scaffolds. Adv Mater 20(23):4494–4498

    Article  CAS  Google Scholar 

  22. Terzaki K, Kissamitaki M, Skarmoutsou A et al (2013) Pre-osteoblastic cell response on three-dimensional, organic–inorganic hybrid material scaffolds for bone tissue engineering. J Biomed Mater Res Part A 101(8):2283–2294

    Article  Google Scholar 

  23. Kapyla E, Aydogan DB, Virjula S et al (2012) Direct laser writing and geometrical analysis of scaffolds with designed pore architecture for three-dimensional cell culturing. J Micromech Microeng 22(11):115016

    Article  Google Scholar 

  24. Raimondi MT, Eaton SM, Laganà M et al (2013) 3D structural niches engineered via two-photon laser polymerization promote stem cell homing. Acta Biomater 9(1):4579–4584

    Article  CAS  PubMed  Google Scholar 

  25. Raimondi MT, Nava MM, Eaton SM et al (2014) Optimization of femtosecond laser polymerized structural niches to control mesenchymal stromal cell fate in culture. Micromachines 5(2):341–358

    Article  Google Scholar 

  26. Nava MM, Raimondi MT, Credi C et al (2015) Interactions between structural and chemical biomimetism in synthetic stem cell niches. Biomed Mater 10(1):015012

    Article  PubMed  Google Scholar 

  27. Ovsianikov A, Viertl J, Chichkov B et al (2008) Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano 2(11):2257–2262

    Article  CAS  PubMed  Google Scholar 

  28. Killi A, Steinmann A, Dörring J et al (2005) High-peak-power pulses from a cavity-dumped Yb:KY(WO4)2 oscillator. Opt Lett 30(14):1891–1893

    Article  CAS  PubMed  Google Scholar 

  29. Malinauskas M, Farsari M, Piskarskasa A et al (2013) Ultrafast laser nanostructuring of photopolymers: a decade of advances. Phys Rep 533(1):1–31

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 646990—NICHOID). These results reflect only the authors’ view and the Agency is not responsible for any use that may be made of the information contained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele M. Nava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Nava, M.M., Zandrini, T., Cerullo, G., Osellame, R., Raimondi, M.T. (2017). 3D Stem Cell Niche Engineering via Two-Photon Laser Polymerization. In: Koledova, Z. (eds) 3D Cell Culture. Methods in Molecular Biology, vol 1612. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7021-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7021-6_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7019-3

  • Online ISBN: 978-1-4939-7021-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics