Skip to main content

Validation of Protein–Ligand Crystal Structure Models: Small Molecule and Peptide Ligands

  • Protocol
  • First Online:
Protein Crystallography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1607))

Abstract

Models of target proteins in complex with small molecule ligands or peptide ligands are of significant interest to the biomedical research community. Structure-guided lead discovery and structure-based drug design make extensive use of such models. The bound ligands comprise only a small fraction of the total X-ray scattering mass, and therefore particular care must be taken to properly validate the atomic model of the ligand as experimental data can often be scarce. The ligand model must be validated against both the primary experimental data and the local environment, specifically: (1) the primary evidence in the form of the electron density, (2) examined for reasonable stereochemistry, and (3) the chemical plausibility of the binding interactions must be inspected. Tools that assist the researcher in the validation process are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide Protein Data Bank. Nat Struct Biol 10:980

    Article  CAS  PubMed  Google Scholar 

  2. Blundell TL, Jhoti H, Abell C (2002) High-throughput crystallography for lead discovery in drug design. Nat Rev Drug Discov 1:45–54

    Article  CAS  PubMed  Google Scholar 

  3. Blundell TL, Patel S (2004) High-throughput X-ray crystallography for drug discovery. Curr Opin Pharmacol 4:490–496

    Article  CAS  PubMed  Google Scholar 

  4. Congreve M, Murray CW, Blundell TL (2005) Structural biology and drug discovery. Drug Discov Today 10:895–907

    Article  CAS  PubMed  Google Scholar 

  5. Deller MC, Rupp B (2015) Models of protein–ligand crystal structures: trust, but verify. J Comput Aided Mol Des 29:817–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pozharski E, Weichenberger CX, Rupp B (2012) Techniques, tools and best practices for ligand electron-density analysis and results from their application to deposited crystal structures. Acta Crystallogr D Biol Crystallogr 69:150–167

    Article  Google Scholar 

  7. Weichenberger C, Pozharski E, Rupp B (2016) Twilight reloaded: the peptide experience. Acta Crystallogr D Biol Crystallogr 72: 211–222

    Google Scholar 

  8. Debreczeni JE, Emsley P (2012) Handling ligands with Coot. Acta Crystallogr D Biol Crystallogr 68:425–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deller MC, Kong L, Rupp B (2016) Protein stability: a crystallographer’s perspective. Acta Crystallogr F Struct Biol Commun 72:72–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pozharski E, Weichenberger CX, Rupp B (2013) Techniques, tools and best practices for ligand electron-density analysis and results from their application to deposited crystal structures. Acta Crystallogr D Biol Crystallogr 69:150–167

    Article  CAS  PubMed  Google Scholar 

  11. Rupp B (2009) Biomolecular crystallography: principles, practice, and application to structural biology. Garland Science, New York

    Google Scholar 

  12. Rhodes G (2006) Crystallography made crystal clear. Academic Press, London, UK

    Google Scholar 

  13. Rossmann M (ed) (1972) The molecular replacement method. Gordon and Breach Science Publishers, New York

    Google Scholar 

  14. Evans P, McCoy A (2008) An introduction to molecular replacement. Acta Crystallogr D Biol Crystallogr 64:1–10

    Article  CAS  PubMed  Google Scholar 

  15. Emsley P, Lohkamp B, Scott WG et al (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. DeLano WL (2008) The PyMOL molecular graphics system. DeLano Scientific, Palo Alto, CA

    Google Scholar 

  17. Dutta S, Burkhardt K, Swaminathan GJ et al (2008) Data deposition and annotation at the Worldwide Protein Data Bank. In: Kobe B, Guss M, Huber T (eds) Structural proteomics: high-throughput methods. Humana Press/Springer, New York

    Google Scholar 

  18. Joosten RP, Womack T, Vriend G et al (2009) Re-refinement from deposited X-ray data can deliver improved models for most PDB entries. Acta Crystallogr D Biol Crystallogr 65:176–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Read RJ, Adams PD, Arendall WB 3rd et al (2011) A new generation of crystallographic validation tools for the protein data bank. Structure 19:1395–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kleywegt GJ, Harris MR, Zou J-Y et al (2004) The Uppsala Electron-Density Server. Acta Crystallogr D Biol Crystallogr 60:2240–2249

    Article  PubMed  Google Scholar 

  21. Weichenberger CX, Pozharski E, Rupp B (2013) Visualizing ligand molecules in twilight electron density. Acta Crystallogr F Struct Biol Commun 69:195–200

    Article  CAS  Google Scholar 

  22. Tronrud D (2004) Introduction to macromolecular refinement. Acta Crystallogr D Biol Crystallogr 60:2156–2168

    Article  PubMed  Google Scholar 

  23. Tickle IJ (2012) Statistical quality indicators for electron-density maps. Acta Crystallogr D Biol Crystallogr 68:454–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brändén CI, Jones TA (1990) Between objectivity and subjectivity. Nature 343:687–689

    Article  Google Scholar 

  25. Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99

    Article  CAS  PubMed  Google Scholar 

  26. Cereto-Massague A, Ojeda MJ, Joosten RP et al (2013) The good, the bad and the dubious: VHELIBS, a validation helper for ligands and binding sites. J Cheminform 5:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kleywegt GJ, Harris MR (2007) ValLigURL: a server for ligand-structure comparison and validation. Acta Crystallogr 63:935–938

    CAS  Google Scholar 

  28. Varekova RS, Jaiswal D, Sehnal D et al (2014) MotiveValidator: interactive web-based validation of ligand and residue structure in biomolecular complexes. Nucleic Acids Res 42:W227–W233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Agirre J, Iglesias-Fernandez J, Rovira C et al (2015) Privateer: software for the conformational validation of carbohydrate structures. Nat Struct Mol Biol 22:833–834

    Article  CAS  PubMed  Google Scholar 

  30. Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786

    Article  CAS  PubMed  Google Scholar 

  31. Joosten RP, te Beek TA, Krieger E et al (2011) A series of PDB related databases for everyday needs. Nucleic Acids Res 39:D411–D419

    Article  CAS  PubMed  Google Scholar 

  32. Winn MD, Ballard CC, Cowtan KD et al (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Smart OS, Womack TO, Flensburg C et al (2011) Better ligand representation in BUSTER protein-complex structure determination. Acta Crystallogr A 67:C134

    Article  Google Scholar 

  34. Murshudov GN, Skubak P, Lebedev AA et al (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67:355–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Afonine PV, Grosse-Kunstleve RW, Echols N et al (2012) Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr 68:352–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang Z, Qian M, Huang Q et al (2001) Crystal structure of the complex of concanavalin A and hexapeptide. J Protein Chem 20(5):423–429

    Article  CAS  PubMed  Google Scholar 

  37. Chen VB, Arendall WB III, Headd JJ et al (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:12–21

    Article  CAS  PubMed  Google Scholar 

  38. Konnert J (1976) A restrained-parameter structure-factor least-squares refinement procedure for large asymmetric units. Acta Crystallogr A 32:614–617

    Article  Google Scholar 

  39. Sethi DK, Agarwal A, Manivel V et al (2006) Differential epitope positioning within the germline antibody paratope enhances promiscuity in the primary immune response. Immunity 24:429–438

    Article  CAS  PubMed  Google Scholar 

  40. Rupp B (2016) Only seeing is believing: the power of evidence and reason. Adv Biochem (Postępy Biochemii) 62:250

    Google Scholar 

  41. Wakatsuki S (2014) Structural biology applications of synchrotron radiation and X-ray free-electron lasers. In: Jaeschke E, Khan S, Schneider RJ, Hastings BJ (eds) Synchrotron light sources and free-electron lasers: accelerator physics, instrumentation and science applications. Springer International Publishing, Switzerland, pp 1–39

    Google Scholar 

  42. Lander GC, Saibil HR, Nogales E (2012) Go hybrid: EM, crystallography, and beyond. Curr Opin Struct Biol 22:627–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Neutze R (2014) Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers. Philos Trans R Soc London B Biol Sci 369:20130318

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rupp B, Wlodawer A, Minor W et al (2016) Correcting the record of structural publications requires joint effort of the community and journal editors. FEBS J 283(24):4452–4457

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

BR receives partial support from the Austrian Science Foundation (FWF) under project P28395-B26.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Rupp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Pozharski, E., Deller, M.C., Rupp, B. (2017). Validation of Protein–Ligand Crystal Structure Models: Small Molecule and Peptide Ligands. In: Wlodawer, A., Dauter, Z., Jaskolski, M. (eds) Protein Crystallography. Methods in Molecular Biology, vol 1607. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7000-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7000-1_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6998-2

  • Online ISBN: 978-1-4939-7000-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics