Skip to main content

Stereochemistry and Validation of Macromolecular Structures

  • Protocol
  • First Online:
Protein Crystallography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1607))

Abstract

Macromolecular structure is governed by the strict rules of stereochemistry. Several approaches to the validation of the correctness of the interpretation of crystallographic and NMR data that underlie the models deposited in the PDB are utilized in practice. The stereochemical rules applicable to macromolecular structures are discussed in this chapter. Practical, computer-based methods and tools of verification of how well the models adhere to those established structural principles to assure their quality are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen FH (2002) The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr B 58:380–388

    Article  PubMed  Google Scholar 

  2. Sheldrick GM (1990) Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr A 46:467–473

    Article  Google Scholar 

  3. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pauling L, Corey RB, Branson HR (1951) The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci U S A 37:205–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pauling L, Corey RB (1951) The pleated sheet, a new layer configuration of polypeptide chains. Proc Natl Acad Sci U S A 37:251–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pauling L, Corey RB (1953) Stable configurations of polypeptide chains. Proc R Soc Lond B 141:21–33

    Article  CAS  PubMed  Google Scholar 

  7. Kendrew JC, Bodo G, Dintzis HM et al (1958) A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature 181:662–666

    Article  CAS  PubMed  Google Scholar 

  8. Perutz MF, Rossmann MG, Cullis AF et al (1960) Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-Å resolution, obtained by X-ray analysis. Nature 185:416–421

    Article  CAS  PubMed  Google Scholar 

  9. Blake CC, Fenn RH, North AC et al (1962) Structure of lysozyme. A Fourier map of the electron density at 6 Å resolution obtained by X-ray diffraction. Nature 196:1173–1176

    Article  CAS  PubMed  Google Scholar 

  10. Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  CAS  PubMed  Google Scholar 

  11. Evans PR (2007) An introduction to stereochemical restraints. Acta Crystallogr D Biol Crystallogr 63:58–61

    Article  CAS  PubMed  Google Scholar 

  12. Wlodawer A, Hendrickson WA (1982) A procedure for joint refinement of macromolecular structures with X-ray and neutron diffraction data from single crystals. Acta Crystallogr A 38:239–247

    Article  Google Scholar 

  13. Hendrickson WA (1985) Stereochemically restrained refinement of macromolecular structures. Methods Enzymol 115:252–270

    Article  CAS  PubMed  Google Scholar 

  14. Brünger AT, Adams PD, Clore GM et al (1998) Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921

    Article  PubMed  Google Scholar 

  15. Sheldrick GM, Schneider TR (1997) SHELXL: high-resolution refinement. Methods Enzymol 277:319–343

    Article  CAS  PubMed  Google Scholar 

  16. Murshudov GN, Skubak P, Lebedev AA et al (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67:355–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Adams PD, Grosse-Kunstleve RW, Hung LW et al (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58:1948–1954

    Article  PubMed  Google Scholar 

  18. Engh R, Huber R (1991) Accurate bond and angle parameters for X-ray protein-structure refinement. Acta Crystallogr A 47:392–400

    Article  Google Scholar 

  19. Engh RA, Huber R (2001) International tables for crystallography. Kluwer Academic Publishers, Dordrecht, pp 382–392

    Google Scholar 

  20. Jaskolski M, Gilski M, Dauter Z, Wlodawer A (2007) Stereochemical restraints revisited: how accurate are refinement targets and how much should protein structures be allowed to deviate from them? Acta Crystallogr D Biol Crystallogr 63:611–620

    Article  CAS  PubMed  Google Scholar 

  21. Tronrud DE, Karplus PA (2011) A conformation-dependent stereochemical library improves crystallographic refinement even at atomic resolution. Acta Crystallogr D Biol Crystallogr 67:699–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Malinska M, Dauter M, Kowiel M et al (2015) Protonation and geometry of histidine rings. Acta Crystallogr D Biol Crystallogr 71:1444–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Parkinson G, Vojtechovsky J, Clowney L et al (1996) New parameters for the refinement of nucleic acid-containing structures. Acta Crystallogr D Biol Crystallogr 52:57–64

    Article  CAS  PubMed  Google Scholar 

  24. Brzezinski K, Brzuszkiewicz A, Dauter M et al (2011) High regularity of Z-DNA revealed by ultra high-resolution crystal structure at 0.55 Å. Nucleic Acids Res 39:6238–6248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ramakrishnan C, Ramachandran GN (1965) Stereochemical criteria for polypeptide and protein chain conformations: II. Allowed conformation for a pair of peptide units. Biophys J 5:909–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Read RJ, Adams PD, Arendall WB III et al (2011) A new generation of crystallographic validation tools for the protein data bank. Structure 19:1395–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Laskowski RA, MacArthur MW, Moss DS et al (1993) PROCHECK: program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  28. Kleywegt GJ, Jones TA (1996) Phi/psi-chology: Ramachandran revisited. Structure 4:1395–1400

    Article  CAS  PubMed  Google Scholar 

  29. Weiss MS, Hilgenfeld R (1997) On the use of the merging R factor as a quality indicator for X-ray data. J Appl Crystallogr 30:203–205

    Article  CAS  Google Scholar 

  30. Stewart DE, Sarkar A, Wampler JE (1990) Occurrence and role of cis peptide bonds in protein structures. J Mol Biol 214:253–260

    Article  CAS  PubMed  Google Scholar 

  31. Touw WG, Joosten RP, Vriend G (2015) Detection of trans-cis flips and peptide-plane flips in protein structures. Acta Crystallogr D Biol Crystallogr 71:1604–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Croll TI (2015) The rate of cis-trans conformation errors is increasing in low-resolution crystal structures. Acta Crystallogr D Biol Crystallogr 71:706–709

    Article  CAS  PubMed  Google Scholar 

  33. EU 3-D Validation Network (1998) Who checks the checkers? Four validation tools applied to eight atomic resolution structures. J Mol Biol 276:417–436

    Article  Google Scholar 

  34. Addlagatta A, Krzywda S, Czapinska H et al (2001) Ultrahigh-resolution structure of a BPTI mutant. Acta Crystallogr D Biol Crystallogr 57:649–663

    Article  CAS  PubMed  Google Scholar 

  35. Chellapa GD, Rose GD (2015) On interpretation of protein X-ray structures: planarity of the peptide unit. Proteins 83:1687–1692

    Article  CAS  PubMed  Google Scholar 

  36. Brereton AE, Karplus PA (2016) On the reliability of peptide nonplanarity seen in ultra-high resolution crystal structures. Protein Sci 25:926–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brändén C-I, Jones TA (1990) Between objectivity and subjectivity. Nature 343:687–689

    Article  Google Scholar 

  38. Jones TA (1985) Interactive computer graphics: FRODO. Methods Enzymol 115:157–171

    Article  CAS  PubMed  Google Scholar 

  39. Jones TA, Zou JY, Cowan S et al (1991) Improved methods for building protein models in electron density maps and location of errors in these models. Acta Crystallogr A 47:110–119

    Article  PubMed  Google Scholar 

  40. Vriend G (1990) WHAT IF: a molecular modelling and drug design program. J Mol Graph 8:52–56

    Article  CAS  PubMed  Google Scholar 

  41. Hooft RW, Vriend G, Sander C et al (1996) Errors in protein structures. Nature 381:272

    Article  CAS  PubMed  Google Scholar 

  42. Nabuurs S, Spronk C, Krieger E et al (2004) Computational mechanical chemistry for drug discovery. Marcel Dekker, New York and Basel, pp 387–403

    Google Scholar 

  43. Lubkowski J, Dauter M, Aghaiypour K et al (2003) Atomic resolution structure of Erwinia chrysanthemi l-asparaginase. Acta Crystallogr D Biol Crystallogr 59:84–92

    Article  PubMed  Google Scholar 

  44. Chen VB, Arendall WB III, Headd JJ et al (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:12–21

    Article  CAS  PubMed  Google Scholar 

  45. Davis IW, Murray LW, Richardson JS et al (2004) MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res 32:W615–W619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Davis IW, Leaver-Fay A, Chen VB et al (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35:W375–W383

    Article  PubMed  PubMed Central  Google Scholar 

  47. Adams PD, Afonine PV, Bunkoczi G et al (2010) PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Clowney L, Jain SC, Srinivasan A et al (1996) Geometric parameters in nucleic acids: nitrogenous bases. J Am Chem Soc 118:509–518

    Article  CAS  Google Scholar 

  49. Gelbin A, Schneider B, Clowney L et al (1996) Geometric parameters in nucleic acids: sugar and phosphate constituents. J Am Chem Soc 118:519–529

    Article  CAS  Google Scholar 

  50. Kleywegt GJ, Harris MR, Zou JY et al (2004) The Uppsala Electron-Density Server. Acta Crystallogr D Biol Crystallogr 60:2240–2249

    Article  PubMed  Google Scholar 

  51. Schumacher MA, Tonthat NK, Lee J et al (2015) Structures of archaeal DNA segregation machinery reveal bacterial and eukaryotic linkages. Science 349:1120–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brünger AT (1992) The free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355:472–474

    Article  PubMed  Google Scholar 

  53. Wlodawer A, Minor W, Dauter Z et al (2008) Protein crystallography for non-crystallographers or how to get the best (but not more) from the published macromolecular structures. FEBS J 275:1–21

    Article  CAS  PubMed  Google Scholar 

  54. Zheng H, Chordia MD, Cooper DR et al (2014) Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server. Nat Protoc 9:156–170

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Wlodawer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Wlodawer, A. (2017). Stereochemistry and Validation of Macromolecular Structures. In: Wlodawer, A., Dauter, Z., Jaskolski, M. (eds) Protein Crystallography. Methods in Molecular Biology, vol 1607. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7000-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7000-1_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6998-2

  • Online ISBN: 978-1-4939-7000-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics