Skip to main content

Serial Synchrotron X-Ray Crystallography (SSX)

  • Protocol
  • First Online:
Protein Crystallography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1607))

Abstract

Prompted by methodological advances in measurements with X-ray free electron lasers, it was realized in the last two years that traditional (or conventional) methods for data collection from crystals of macromolecular specimens can be complemented by synchrotron measurements on microcrystals that would individually not suffice for a complete data set. Measuring, processing, and merging many partial data sets of this kind requires new techniques which have since been implemented at several third-generation synchrotron facilities, and are described here. Among these, we particularly focus on the possibility of in situ measurements combined with in meso crystal preparations and data analysis with the XDS package and auxiliary programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arndt UW, Wonacott AJ (1977) The rotation method in crystallography. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  2. Darwin CG (1914) XXXIV. The theory of X-ray reflexion. Philos Mag Ser 6 27:315–333

    Article  CAS  Google Scholar 

  3. Warren BE (1969) X-ray diffraction. Addison-Wesley Pub. Co., Reading, MA

    Google Scholar 

  4. Holton JM, Frankel KA (2010) The minimum crystal size needed for a complete diffraction data set. Acta Crystallogr D Biol Crystallogr 66:393–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC (1958) A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature 181:662–666

    Article  CAS  PubMed  Google Scholar 

  6. Perutz MF, Rossmann MG, Cullis AF, Muirhead H, Will G (1960) Structure of hæmoglobin: a three-dimensional fourier synthesis at 5.5-Å. resolution, obtained by X-ray analysis. Nature 185:416–422

    Article  CAS  PubMed  Google Scholar 

  7. Harrison SC, Olson AJ, Schutt CE, Winkler FK, Bricogne G (1978) Tomato bushy stunt virus at 2.9 A resolution. Nature 276:368–373

    Article  CAS  PubMed  Google Scholar 

  8. Hendrickson WA (2000) Synchrotron crystallography. Trends Biochem Sci 25:637–643

    Article  CAS  PubMed  Google Scholar 

  9. Hope H (1988) Cryocrystallography of biological macromolecules: a generally applicable method. Acta Crystallogr B 44:22–26

    Article  PubMed  Google Scholar 

  10. Sliz P, Harrison SC, Rosenbaum G (2003) How does radiation damage in protein crystals depend on X-ray dose? Structure 11:13–19

    Article  CAS  PubMed  Google Scholar 

  11. Cusack S, Belrhali H, Bram A, Burghammer M, Perrakis A, Riekel C (1998) Small is beautiful: protein micro-crystallography. Nat Struct Biol 5(Suppl):634–637

    Article  CAS  PubMed  Google Scholar 

  12. Smith JL, Fischetti RF, Yamamoto M (2012) Micro-crystallography comes of age. Curr Opin Struct Biol 22:602–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chapman HN, Fromme P, Barty A et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schlichting I (2015) Serial femtosecond crystallography: the first five years. IUCrJ 2:246–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gavira JA (2015) Current trends in protein crystallization. Arch Biochem Biophys 602:3–11

    Article  PubMed  CAS  Google Scholar 

  16. Liu W, Ishchenko A, Cherezov V (2014) Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography. Nat Protoc 9:2123–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. DePonte DP, Weierstall U, Schmidt K, Warner J, Starodub D, Spence JCH, Doak RB (2008) Gas dynamic virtual nozzle for generation of microscopic droplet streams. J Phys D Appl Phys 41:195505

    Article  CAS  Google Scholar 

  18. Weierstall U, James D, Wang C et al (2014) Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat Commun 5:3309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Botha S, Nass K, Barends TRM et al (2015) Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams. Acta Crystallogr D Biol Crystallogr 71:387–397

    Article  CAS  PubMed  Google Scholar 

  20. Boutet S, Lomb L, Williams GJ et al (2012) High-resolution protein structure determination by serial femtosecond crystallography. Science 337:362–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sierra RG, Laksmono H, Kern J et al (2012) Nanoflow electrospinning serial femtosecond crystallography. Acta Crystallogr D Biol Crystallogr 68:1584–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sugahara M, Mizohata E, Nango E et al (2015) Grease matrix as a versatile carrier of proteins for serial crystallography. Nat Methods 12:61–63

    Article  CAS  PubMed  Google Scholar 

  23. Conrad CE, Basu S, James D et al (2015) A novel inert crystal delivery medium for serial femtosecond crystallography. IUCrJ 2:421–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu W, Wacker D, Gati C et al (2013) Serial femtosecond crystallography of G protein-coupled receptors. Science 342:1521–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fenalti G, Zatsepin NA, Betti C et al (2015) Structural basis for bifunctional peptide recognition at human δ-opioid receptor. Nat Struct Mol Biol 22:265–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang H, Unal H, Gati C et al (2015) Structure of the angiotensin receptor revealed by serial femtosecond crystallography. Cell 161:833–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kang Y, Zhou XE, Gao X et al (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523:561–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nogly P, James D, Wang D, White TA, Shilova A, Nelson G, Liu H, Johansson L (2015) Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. IUCrJ 2:168–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stellato F, Oberthür D, Liang M et al (2014) Room-temperature macromolecular serial crystallography using synchrotron radiation. IUCrJ 1:204–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roessler CG, Agarwal R, Allaire M et al (2016) Acoustic injectors for drop-on-demand serial femtosecond crystallography. Structure 24:631–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Roessler CG, Kuczewski A, Stearns R, Ellson R, Olechno J, Orville AM, Allaire M, Soares AS, Héroux A (2013) Acoustic methods for high-throughput protein crystal mounting at next-generation macromolecular crystallographic beamlines. J Synchrotron Radiat 20:805–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Soares AS, Mullen JD, Parekh RM, McCarthy GS, Roessler CG, Jackimowicz R, Skinner JM, Orville AM, Allaire M, Sweet RM (2014) Solvent minimization induces preferential orientation and crystal clustering in serial micro-crystallography on micro-meshes, in situ plates and on a movable crystal conveyor belt. J Synchrotron Radiat 21:1231–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tsujino S, Tomizaki T (2016) Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature. Sci Rep 6:25558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hunter MS, Segelke B, Messerschmidt M et al (2014) Fixed-target protein serial microcrystallography with an X-ray free electron laser. Sci Rep 4:6026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cohen AE, Soltis SM, González A et al (2014) Goniometer-based femtosecond crystallography with X-ray free electron lasers. Proc Natl Acad Sci U S A 111:17122–17127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hirata K, Shinzawa-Itoh K, Yano N et al (2014) Determination of damage-free crystal structure of an X-ray-sensitive protein using an XFEL. Nat Methods 11:734–736

    Article  CAS  PubMed  Google Scholar 

  37. Wierman JL, Alden JS, Kim CU, McEuen PL, Gruner SM (2013) Graphene as a protein crystal mounting material to reduce background scatter. J Appl Crystallogr 46:1501–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Warren AJ, Crawshaw AD, Trincao J, Aller P, Alcock S, Nistea I, Salgado PS, Evans G (2015) In vacuo X-ray data collection from graphene-wrapped protein crystals. Acta Crystallogr D Biol Crystallogr 71:2079–2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sui S, Wang Y, Kolewe KW, Srajer V, Henning R, Schiffman JD, Dimitrakopoulos C, Perry SL (2016) Graphene-based microfluidics for serial crystallography. Lab Chip. Advance article. doi:10.1039/C6LC00451B

  40. Zarrine-Afsar A, Barends TRM, Müller C, Fuchs MR, Lomb L, Schlichting I, Miller RJD (2012) Crystallography on a chip. Acta Crystallogr D Biol Crystallogr 68:321–323

    Article  CAS  PubMed  Google Scholar 

  41. Murray TD, Lyubimov AY, Ogata CM, Vo H, Uervirojnangkoorn M, Brunger AT, Berger JM (2015) A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions. Acta Crystallogr D Biol Crystallogr 71:1987–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Roedig P, Vartiainen I, Duman R et al (2015) A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering. Sci Rep 5:10451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lyubimov AY, Murray TD, Koehl A et al (2015) Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array. Acta Crystallogr D Biol Crystallogr 71:928–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Baxter EL, Aguila L, Alonso-Mori R et al (2016) High-density grids for efficient data collection from multiple crystals. Acta Crystallogr D Biol Crystallogr 72:2–11

    Article  CAS  Google Scholar 

  45. Coquelle N, Brewster AS, Kapp U, Shilova A, Weinhausen B, Burghammer M, Colletier JP (2015) Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams. Acta Crystallogr D Biol Crystallogr 71:1184–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Coulibaly F, Chiu E, Ikeda K, Gutmann S, Haebel PW, Schulze-Briese C, Mori H, Metcalf P (2007) The molecular organization of cypovirus polyhedra. Nature 446:97–101

    Article  CAS  PubMed  Google Scholar 

  47. Cherezov V, Hanson MA, Griffith MT, Hilgart MC, Sanishvili R, Nagarajan V, Stepanov S, Fischetti RF, Kuhn P, Stevens RC (2009) Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 microm size X-ray synchrotron beam. J R Soc Interface 6(Suppl 5):S587–S597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ji X, Sutton G, Evans G, Axford D, Owen R, Stuart DI (2010) How baculovirus polyhedra fit square pegs into round holes to robustly package viruses. EMBO J 29:505–514

    Article  CAS  PubMed  Google Scholar 

  49. Axford D, Ji X, Stuart DI, Sutton G (2014) In cellulo structure determination of a novel cypovirus polyhedrin. Acta Crystallogr D Biol Crystallogr 70:1435–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zander U, Bourenkov G, Popov AN, de Sanctis D, Svensson O, AA MC, Round E, Gordeliy V, Mueller-Dieckmann C, Leonard GA (2015) MeshAndCollect: an automated multi-crystal data-collection workflow for synchrotron macromolecular crystallography beamlines. Acta Crystallogr D Biol Crystallogr 71:2328–2343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Boudes M, Garriga D, Fryga A, Caradoc-Davies T, Coulibaly F (2016) A pipeline for structure determination of ıt in vivo-grown crystals using ıt in cellulo diffraction. Acta Crystallogr D Biol Crystallogr 72:576–585

    Article  CAS  Google Scholar 

  52. Gati C, Bourenkov G, Klinge M et al (2014) Serial crystallography on in vivo grown microcrystals using synchrotron radiation. IUCrJ 1:87–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li L, Ismagilov RF (2010) Protein crystallization using microfluidic technologies based on valves, droplets, and SlipChip. Annu Rev Biophys 39:139–158

    Article  CAS  PubMed  Google Scholar 

  54. Kisselman G, Qiu W, Romanov V, Thompson CM, Lam R, Battaile KP, Pai EF, Chirgadze NY (2011) X-CHIP: an integrated platform for high-throughput protein crystallization and on-the-chip X-ray diffraction data collection. Acta Crystallogr D Biol Crystallogr 67:533–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dhouib K, Khan Malek C, Pfleging W et al (2009) Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis. Lab Chip 9:1412–1421

    Article  CAS  PubMed  Google Scholar 

  56. Pinker F, Brun M, Morin P et al (2013) ChipX: a novel microfluidic chip for counter-diffusion crystallization of biomolecules and in situ crystal analysis at room temperature. Cryst Growth Des 13:3333–3340

    Article  CAS  Google Scholar 

  57. Perry SL, Guha S, Pawate AS, Bhaskarla A, Agarwal V, Nair SK, Kenis PJA (2013) A microfluidic approach for protein structure determination at room temperature via on-chip anomalous diffraction. Lab Chip 13:3183–3187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Khvostichenko DS, Schieferstein JM, Pawate AS, Laible PD, Kenis PJA (2014) X-ray transparent microfluidic chip for mesophase-based crystallization of membrane proteins and on-chip structure determination. Cryst Growth Des 14:4886–4890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Heymann M, Opthalage A, Wierman JL, Akella S, Szebenyi DME, Gruner SM, Fraden S (2014) Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction. IUCrJ 1:349–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jacquamet L, Ohana J, Joly J et al (2004) Automated analysis of vapor diffusion crystallization drops with an X-ray beam. Structure 12:1219–1225

    Article  CAS  PubMed  Google Scholar 

  61. Bingel-Erlenmeyer R, Olieric V, Grimshaw JPA et al (2011) SLS crystallization platform at beamline X06DA—a fully automated pipeline enabling in situ X-ray diffraction screening. Cryst Growth Des 11:916–923

    Article  CAS  Google Scholar 

  62. Axford D, Owen RL, Aishima J et al (2012) In situ macromolecular crystallography using microbeams. Acta Crystallogr D Biol Crystallogr 68:592–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Axford D, Foadi J, Hu N-J, Choudhury HG, Iwata S, Beis K, Evans G, Alguel Y (2015) Structure determination of an integral membrane protein at room temperature from crystals in situ. Acta Crystallogr D Biol Crystallogr 71:1228–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gelin M, Delfosse V, Allemand F, Hoh F, Sallaz-Damaz Y, Pirocchi M, Bourguet W, Ferrer JL, Labesse G, Guichou JF (2015) Combining “dry” co-crystallization and in situ diffraction to facilitate ligand screening by X-ray crystallography. Acta Crystallogr D Biol Crystallogr 71:1777–1787

    Article  CAS  PubMed  Google Scholar 

  65. Axford D, Aller P, Sanchez-Weatherby J, Sandy J (2016) Applications of thin-film sandwich crystallization platforms. Acta Crystallogr F Struct Biol Commun 72:313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cipriani F, Röwer M, Landret C, Zander U, Felisaz F, Márquez JA (2012) CrystalDirect: a new method for automated crystal harvesting based on laser-induced photoablation of thin films. Acta Crystallogr D Biol Crystallogr 68:1393–1399

    Article  CAS  PubMed  Google Scholar 

  67. Zander U, Hoffmann G, Cornaciu I et al (2016) Automated harvesting and processing of protein crystals through laser photoablation. Acta Crystallogr D Biol Crystallogr 72:454–466

    Article  CAS  Google Scholar 

  68. Caffrey M (2015) A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Crystallogr F Struct Biol Commun 71:3–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huang CY, Olieric V, Ma P, Panepucci E, Diederichs K, Wang M, Caffrey M (2015) In meso in situ serial X-ray crystallography of soluble and membrane proteins. Acta Crystallogr D Biol Crystallogr 71:1238–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Huang CY, Olieric V, Ma P et al (2016) In meso in situ serial X-ray crystallography of soluble and membrane proteins at cryogenic temperatures. Acta Crystallogr D Biol Crystallogr 72:93–112

    Article  CAS  Google Scholar 

  71. Fraser JS, van den Bedem H, Samelson AJ, Lang PT, Holton JM, Echols N, Alber T (2011) Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proc Natl Acad Sci U S A 108:16247–16252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Keedy DA, Kenner LR, Warkentin M et al (2015) Mapping the conformational landscape of a dynamic enzyme by multitemperature and XFEL crystallography. Elife 4:e07574

    Article  PubMed  PubMed Central  Google Scholar 

  73. Leal RMF, Bourenkov G, Russi S, Popov AN (2013) A survey of global radiation damage to 15 different protein crystal types at room temperature: a new decay model. J Synchrotron Radiat 20:14–22

    Article  CAS  PubMed  Google Scholar 

  74. Owen RL, Paterson N, Axford D, Aishima J, Schulze-Briese C, Ren J, Fry EE, Stuart DI, Evans G (2014) Exploiting fast detectors to enter a new dimension in room-temperature crystallography. Acta Crystallogr D Biol Crystallogr 70:1248–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Henderson R (1990) Cryo-protection of protein crystals against radiation damage in electron and X-ray diffraction. Proc R Soc Lond B 241:6–8

    Article  CAS  Google Scholar 

  76. Owen RL, Rudiño-Piñera E, Garman EF (2006) Experimental determination of the radiation dose limit for cryocooled protein crystals. Proc Natl Acad Sci U S A 103:4912–4917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Evans G, Axford D, Owen RL (2011) The design of macromolecular crystallography diffraction experiments. Acta Crystallogr D Biol Crystallogr 67:261–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mueller M, Wang M, Schulze-Briese C (2012) Optimal fine φ-slicing for single-photon-counting pixel detectors. Acta Crystallogr D Biol Crystallogr 68:42–56

    Article  CAS  PubMed  Google Scholar 

  79. Dauter Z (1999) Data-collection strategies. Acta Crystallogr D Biol Crystallogr 55:1703–1717

    Article  CAS  PubMed  Google Scholar 

  80. Bourenkov GP, Popov AN (2006) A quantitative approach to data-collection strategies. Acta Crystallogr D Biol Crystallogr 62:58–64

    Article  PubMed  CAS  Google Scholar 

  81. Borek D, Minor W, Otwinowski Z (2003) Measurement errors and their consequences in protein crystallography. Acta Crystallogr D Biol Crystallogr 59:2031–2038

    Article  PubMed  Google Scholar 

  82. Liu ZJ, Chen L, Wu D, Ding W, Zhang H, Zhou W, Fu ZQ, Wang BC (2011) A multi-dataset data-collection strategy produces better diffraction data. Acta Crystallogr A 67:544–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Weinert T, Olieric V, Waltersperger S et al (2015) Fast native-SAD phasing for routine macromolecular structure determination. Nat Methods 12:131–133

    Article  CAS  PubMed  Google Scholar 

  84. Brockhauser S, White KI, AA MC, RBG R (2011) Translation calibration of inverse-kappa goniometers in macromolecular crystallography. Acta Crystallogr A 67:219–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Waltersperger S, Olieric V, Pradervand C et al (2015) PRIGo: a new multi-axis goniometer for macromolecular crystallography. J Synchrotron Radiat 22:895–900

    Article  PubMed  PubMed Central  Google Scholar 

  86. Liu Q, Dahmane T, Zhang Z, Assur Z, Brasch J, Shapiro L, Mancia F, Hendrickson WA (2012) Structures from anomalous diffraction of native biological macromolecules. Science 336:1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Olieric V, Weinert T, Finke AD et al (2016) Data-collection strategy for challenging native SAD phasing. Acta Crystallogr D Biol Crystallogr 72:421–429

    Article  CAS  Google Scholar 

  88. Liu Q, Hendrickson WA (2015) Crystallographic phasing from weak anomalous signals. Curr Opin Struct Biol 34:99–107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Ayyer K, Philipp HT, Tate MW, Wierman JL, Elser V, Gruner SM (2015) Determination of crystallographic intensities from sparse data. IUCrJ 2:29–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Holton JM (2009) A beginner’s guide to radiation damage. J Synchrotron Radiat 16:133–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kabsch W (2010) Xds. Acta Crystallogr D Biol Crystallogr 66:125–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kabsch W (2010) Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr D Biol Crystallogr 66:133–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Battye TGG, Kontogiannis L, Johnson O, Powell HR, Leslie AGW (2011) iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr D Biol Crystallogr 67:271–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  95. Brehm W, Diederichs K (2013) Breaking the indexing ambiguity in serial crystallography. Acta Crystallogr D Biol Crystallogr 70:101–109

    Article  PubMed  CAS  Google Scholar 

  96. Arndt UW, Crowther RA, Mallett JF (1968) A computer-linked cathode-ray tube microdensitometer for X-ray crystallography. J Sci Instrum 1:510–516

    Article  CAS  PubMed  Google Scholar 

  97. Diederichs K, Karplus A (1997) Improved R-factors. Nat Struct Biol 4:269–275

    Article  CAS  PubMed  Google Scholar 

  98. Krojer T, von Delft F (2011) Assessment of radiation damage behaviour in a large collection of empirically optimized datasets highlights the importance of unmeasured complicating effects. J Synchrotron Radiat 18:387–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Karplus PA, Diederichs K (2012) Linking crystallographic model and data quality. Science 336:1030–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Diederichs K, Karplus PA (2013) Better models by discarding data? Acta Crystallogr D Biol Crystallogr 69:1215–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Karplus PA, Diederichs K (2015) Assessing and maximizing data quality in macromolecular crystallography. Curr Opin Struct Biol 34:60–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Assmann G, Brehm W, Diederichs K (2016) Identification of rogue datasets in serial crystallography. J Appl Crystallogr 49:1021–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sheldrick GM (2010) Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr D Biol Crystallogr 66:479–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Adams PD, Afonine PV, Bunkóczi G et al (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Greta Assmann, Wolfgang Brehm, Martin Caffrey, Chia-Ying Huang, Vincent Olieric, Ezequiel Panepucci, Rangana Warshamanage, and all other members of the groups at the Swiss Light Source (Paul-Scherrer-Institute, Villigen, Switzerland), Trinity College (Dublin, Ireland) and University of Konstanz (Konstanz, Germany) for discussions and their contributions toward developing the methodology. We also thank Aaron Finke and Martin Caffrey for proofreading the manuscript and Rangana Warshamanage and Chia-Ying Huang for preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay Diederichs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Diederichs, K., Wang, M. (2017). Serial Synchrotron X-Ray Crystallography (SSX). In: Wlodawer, A., Dauter, Z., Jaskolski, M. (eds) Protein Crystallography. Methods in Molecular Biology, vol 1607. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7000-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7000-1_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6998-2

  • Online ISBN: 978-1-4939-7000-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics