Skip to main content

Cell Cycle Resolved Measurements of Poly(ADP-Ribose) Formation and DNA Damage Signaling by Quantitative Image-Based Cytometry

  • Protocol
  • First Online:
Poly(ADP-Ribose) Polymerase

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1608))

Abstract

Formation of poly(ADP-ribose) (PAR) marks intracellular stress signaling and is notably induced upon DNA damage. PAR polymerases (PARPs) catalyze PAR synthesis upon genotoxic stress and thereby recruit multiple proteins to damaged chromatin. PAR induction is transient and antagonized by the action of PAR glycohydrolase (PARG). Given that poly(ADP-ribosyl)ation (PARylation) is involved in genome integrity maintenance and other vital cellular functions, but also in light of the recent approval of PARP inhibitors for cancer treatments, reliable measurements of intracellular PAR formation have gained importance. Here we provide a detailed protocol for PAR measurements by quantitative image-based cytometry. This technique combines the high spatial resolution of single-cell microscopy with the advantages of cell population measurements through automated high-content imaging. Such upscaling of immunofluorescence-based PAR detection not only increases the robustness of the measurements through averaging across large cell populations but also allows for the discrimination of subpopulations and thus enables multivariate measurements of PAR levels and DNA damage signaling. We illustrate how this technique can be used to assess the dynamics of the cellular response to oxidative damage as well as to PARP inhibitor-induced genotoxicity in a cell cycle resolved manner. Due to the possibility to use any automated microscope for quantitative image-based cytometry, the presented method has widespread applicability in the area of PARP biology and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hottiger MO (2015) Nuclear ADP-ribosylation and its role in chromatin plasticity, cell differentiation, and epigenetics. Annu Rev Biochem 84:227–263. doi:10.1146/annurev-biochem-060614-034506

    Article  CAS  PubMed  Google Scholar 

  2. Teloni F, Altmeyer M (2016) Readers of poly(ADP-ribose): designed to be fit for purpose. Nucleic Acids Res 44(3):993–1006. doi:10.1093/nar/gkv1383

    Article  CAS  PubMed  Google Scholar 

  3. Altmeyer M, Neelsen KJ, Teloni F, Pozdnyakova I, Pellegrino S, Grofte M, Rask MB, Streicher W, Jungmichel S, Nielsen ML, Lukas J (2015) Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat Commun 6:8088. doi:10.1038/ncomms9088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aguzzi A, Altmeyer M (2016) Phase separation: linking cellular compartmentalization to disease. Trends Cell Biol. 26(7):547–558 doi:10.1016/j.tcb.2016.03.004

    Article  CAS  PubMed  Google Scholar 

  5. O’Connor MJ (2015) Targeting the DNA damage response in cancer. Mol Cell 60(4):547–560. doi:10.1016/j.molcel.2015.10.040

    Article  PubMed  Google Scholar 

  6. Lord CJ, Ashworth A (2016) BRCAness revisited. Nat Rev Cancer. 16(2):110–120. doi:10.1038/nrc.2015.21

    Article  CAS  PubMed  Google Scholar 

  7. Kraus WL (2015) PARPs and ADP-ribosylation: 50 years ... and counting. Mol Cell 58(6):902–910. doi:10.1016/j.molcel.2015.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gagne JP, Haince JF, Pic E, Poirier GG (2011) Affinity-based assays for the identification and quantitative evaluation of noncovalent poly(ADP-ribose)-binding proteins. Methods Mol Biol 780:93–115. doi:10.1007/978-1-61779-270-0_7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gagne JP, Pic E, Isabelle M, Krietsch J, Ethier C, Paquet E, Kelly I, Boutin M, Moon KM, Foster LJ, Poirier GG (2012) Quantitative proteomics profiling of the poly(ADP-ribose)-related response to genotoxic stress. Nucleic Acids Res 40(16):7788–7805. doi:10.1093/nar/gks486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Isabelle M, Gagne JP, Gallouzi IE, Poirier GG (2012) Quantitative proteomics and dynamic imaging reveal that G3BP-mediated stress granule assembly is poly(ADP-ribose)-dependent following exposure to MNNG-induced DNA alkylation. J Cell Sci 125(Pt 19):4555–4566. doi:10.1242/jcs.106963

    Article  CAS  PubMed  Google Scholar 

  11. Jungmichel S, Rosenthal F, Altmeyer M, Lukas J, Hottiger MO, Nielsen ML (2013) Proteome-wide identification of poly(ADP-ribosyl)ation targets in different genotoxic stress responses. Mol Cell 52(2):272–285. doi:10.1016/j.molcel.2013.08.026

    Article  CAS  PubMed  Google Scholar 

  12. Rosenthal F, Hottiger MO (2014) Identification of ADP-ribosylated peptides and ADP-ribose acceptor sites. Front Biosci 19:1041–1056

    Article  CAS  Google Scholar 

  13. Daniels CM, Ong SE, Leung AK (2015) The promise of proteomics for the study of ADP-ribosylation. Mol Cell 58(6):911–924. doi:10.1016/j.molcel.2015.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bartolomei G, Leutert M, Manzo M, Baubec T, Hottiger MO (2016) Analysis of chromatin ADP-ribosylation at the genome-wide level and at specific loci by ADPr-ChAP. Mol Cell 61(3):474–485. doi:10.1016/j.molcel.2015.12.025

    Article  CAS  PubMed  Google Scholar 

  15. Roukos V, Pegoraro G, Voss TC, Misteli T (2015) Cell cycle staging of individual cells by fluorescence microscopy. Nat Protoc 10(2):334–348. doi:10.1038/nprot.2015.016

    Article  PubMed  Google Scholar 

  16. Blasi T, Hennig H, Summers HD, Theis FJ, Cerveira J, Patterson JO, Davies D, Filby A, Carpenter AE, Rees P (2016) Label-free cell cycle analysis for high-throughput imaging flow cytometry. Nat Commun 7:10256. doi:10.1038/ncomms10256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Boutros M, Heigwer F, Laufer C (2015) Microscopy-based high-content screening. Cell 163(6):1314–1325. doi:10.1016/j.cell.2015.11.007

    Article  CAS  PubMed  Google Scholar 

  18. Liberali P, Snijder B, Pelkmans L (2015) Single-cell and multivariate approaches in genetic perturbation screens. Nat Rev Genet 16(1):18–32. doi:10.1038/nrg3768

    Article  CAS  PubMed  Google Scholar 

  19. Sailem HZ, Cooper S, Bakal C (2016) Visualizing quantitative microscopy data: history and challenges. Crit Rev Biochem Mol Biol 51(2):96–101. doi:10.3109/10409238.2016.1146222

    Article  PubMed  PubMed Central  Google Scholar 

  20. Altmeyer M, Toledo L, Gudjonsson T, Grofte M, Rask MB, Lukas C, Akimov V, Blagoev B, Bartek J, Lukas J (2013) The chromatin scaffold protein SAFB1 renders chromatin permissive for DNA damage signaling. Mol Cell 52(2):206–220. doi:10.1016/j.molcel.2013.08.025

    Article  CAS  PubMed  Google Scholar 

  21. Toledo LI, Altmeyer M, Rask MB, Lukas C, Larsen DH, Povlsen LK, Bekker-Jensen S, Mailand N, Bartek J, Lukas J (2013) ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155(5):1088–1103. doi:10.1016/j.cell.2013.10.043

    Article  CAS  PubMed  Google Scholar 

  22. Larsen DH, Hari F, Clapperton JA, Gwerder M, Gutsche K, Altmeyer M, Jungmichel S, Toledo LI, Fink D, Rask MB, Grofte M, Lukas C, Nielsen ML, Smerdon SJ, Lukas J, Stucki M (2014) The NBS1-treacle complex controls ribosomal RNA transcription in response to DNA damage. Nat Cell Biol 16(8):792–803. doi:10.1038/ncb3007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ahuja AK, Jodkowska K, Teloni F, Bizard AH, Zellweger R, Herrador R, Ortega S, Hickson ID, Altmeyer M, Mendez J, Lopes M (2016) A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells. Nat Commun 7:10660. doi:10.1038/ncomms10660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Beneke S, Meyer K, Holtz A, Huttner K, Burkle A (2012) Chromatin composition is changed by poly(ADP-ribosyl)ation during chromatin immunoprecipitation. PLoS One 7(3):e32914. doi:10.1371/journal.pone.0032914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. doi:10.1038/Nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  27. Held M, Schmitz MHA, Fischer B, Walter T, Neumann B, Olma MH, Peter M, Ellenberg J, Gerlich DW (2010) CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging. Nat Methods 7(9):747–U118. doi:10.1038/nmeth.1486

    Article  CAS  PubMed  Google Scholar 

  28. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7(10):R100. doi:10.1186/gb-2006-7-10-r100

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to our lab members Thomas Schmid, Federico Teloni, and Stefania Pellegrino for their help with quantitative image-based cytometry and to Jiri Lukas and Luis Toledo for sharing reagents and exchange of unpublished results. Luis Toledo also provided valuable comments on the manuscript. Urs Ziegler and José María Mateos Melero from the Center for Microscopy and Image Analysis at the University of Zurich are acknowledged for expert microscopy support. Research in the lab of Matthias Altmeyer is financed by the Swiss National Science Foundation (SNSF Professorship Grant PP00P3_150690) and by the University of Zurich Association Research Talent Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Altmeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Michelena, J., Altmeyer, M. (2017). Cell Cycle Resolved Measurements of Poly(ADP-Ribose) Formation and DNA Damage Signaling by Quantitative Image-Based Cytometry. In: Tulin, A. (eds) Poly(ADP-Ribose) Polymerase. Methods in Molecular Biology, vol 1608. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6993-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6993-7_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6992-0

  • Online ISBN: 978-1-4939-6993-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics