Skip to main content

Genome to Phenome: A Systems Biology Approach to PTSD Using an Animal Model

  • Protocol
  • First Online:
Neuroproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1598))

Abstract

Post-traumatic stress disorder (PTSD) is a debilitating illness that imposes significant emotional and financial burdens on military families. The understanding of PTSD etiology remains elusive; nonetheless, it is clear that PTSD is manifested by a cluster of symptoms including hyperarousal, reexperiencing of traumatic events, and avoidance of trauma reminders. With these characteristics in mind, several rodent models have been developed eliciting PTSD-like features. Animal models with social dimensions are of particular interest, since the social context plays a major role in the development and manifestation of PTSD.

For civilians, a core trauma that elicits PTSD might be characterized by a singular life-threatening event such as a car accident. In contrast, among war veterans, PTSD might be triggered by repeated threats and a cumulative psychological burden that coalesced in the combat zone. In capturing this fundamental difference, the aggressor-exposed social stress (Agg-E SS) model imposes highly threatening conspecific trauma on naïve mice repeatedly and randomly.

There is abundant evidence that suggests the potential role of genetic contributions to risk factors for PTSD. Specific observations include putatively heritable attributes of the disorder, the cited cases of atypical brain morphology, and the observed neuroendocrine shifts away from normative. Taken together, these features underscore the importance of multi-omics investigations to develop a comprehensive picture. More daunting will be the task of downstream analysis with integration of these heterogeneous genotypic and phenotypic data types to deliver putative clinical biomarkers. Researchers are advocating for a systems biology approach, which has demonstrated an increasingly robust potential for integrating multidisciplinary data. By applying a systems biology approach here, we have connected the tissue-specific molecular perturbations to the behaviors displayed by mice subjected to Agg-E SS. A molecular pattern that links the atypical fear plasticity to energy deficiency was thereby identified to be causally associated with many behavioral shifts and transformations.

PTSD is a multifactorial illness sensitive to environmental influence. Accordingly, it is essential to employ the optimal animal model approximating the environmental condition that elicits PTSD-like symptoms. Integration of an optimal animal model with a systems biology approach can contribute to a more knowledge-driven and efficient next-generation care management system and, potentially, prevention of PTSD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Psychiatric Association (1994) Diagnostic criteria from DSM-IV. The Association, Washington, DC

    Google Scholar 

  2. Solomon Z, Mikulincer M (2006) Trajectories of PTSD: a 20-year longitudinal study. Am J Psychiatry 163:659–666

    Article  PubMed  Google Scholar 

  3. Bleich A, Solomon Z (2004) Evaluation of psychiatric disability in PTSD of military origin. Isr J Psychiatry Relat Sci 41:268–276

    PubMed  Google Scholar 

  4. Dekel R, Solomon Z, Bleich A (2004) The contribution of social disability to the evaluation of mental disability among PTSD veterans. Isr J Psychiatry Relat Sci 41:237–247

    PubMed  Google Scholar 

  5. Solomon Z (1989) PTSD and social functioning. A three year prospective study. Soc Psychiatry Psychiatr Epidemiol 24:127–133

    Article  CAS  PubMed  Google Scholar 

  6. Hunter RG, McCarthy KJ, Milne TA, Pfaff DW, McEwen BS (2009) Regulation of hippocampal H3 histone methylation by acute and chronic stress. Proc Natl Acad Sci U S A 106:20912–20917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Golub Y, Mauch CP, Dahlhoff M, Wotjak CT (2009) Consequences of extinction training on associative and non-associative fear in a mouse model of Posttraumatic Stress Disorder (PTSD). Behav Brain Res 205:544–549

    Article  PubMed  Google Scholar 

  8. Siegmund A, Dahlhoff M, Habersetzer U, Mederer A, Wolf E, Holsboer F, Wotjak CT (2009) Maternal inexperience as a risk factor of innate fear and PTSD-like symptoms in mice. J Psychiatr Res 43:1156–1165

    Article  PubMed  Google Scholar 

  9. Brinks V, de Kloet ER, Oitzl MS (2009) Corticosterone facilitates extinction of fear memory in BALB/c mice but strengthens cue related fear in C57BL/6 mice. Exp Neurol 216:375–382

    Article  CAS  PubMed  Google Scholar 

  10. Lumley LA, Sipos ML, Charles RC, Charles RF, Meyerhoff JL (1999) Social stress effects on territorial marking and ultrasonic vocalizations in mice. Physiol Behav 67:769–775

    Article  CAS  PubMed  Google Scholar 

  11. Hammamieh R, Chakraborty N, De Lima TC, Meyerhoff J, Gautam A, Muhie S, D'Arpa P, Lumley L, Carroll E, Jett M (2012) Murine model of repeated exposures to conspecific trained aggressors simulates features of post-traumatic stress disorder. Behav Brain Res 235:55–66

    Article  PubMed  Google Scholar 

  12. Baisley SK, Cloninger CL, Bakshi VP (2011) Fos expression following regimens of predator stress versus footshock that differentially affect prepulse inhibition in rats. Physiol Behav 104:796–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Power AE, McGaugh JL (2002) Cholinergic activation of the basolateral amygdala regulates unlearned freezing behavior in rats. Behav Brain Res 134:307–315

    Article  CAS  PubMed  Google Scholar 

  14. Wallace KJ, Rosen JB (2001) Neurotoxic lesions of the lateral nucleus of the amygdala decrease conditioned fear but not unconditioned fear of a predator odor: comparison with electrolytic lesions. J Neurosci 21:3619–3627

    CAS  PubMed  Google Scholar 

  15. Church DM, Goodstadt L, Hillier LW, Zody MC, Goldstein S, She X, Bult CJ, Agarwala R, Cherry JL, DiCuccio M, Hlavina W, Kapustin Y, Meric P, Maglott D, Birtle Z, Marques AC, Graves T, Zhou S, Teague B, Potamousis K, Churas C, Place M, Herschleb J, Runnheim R, Forrest D, Amos-Landgraf J, Schwartz DC, Cheng Z, Lindblad-Toh K, Eichler EE, Ponting CP, Mouse Genome Sequencing C (2009) Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol 7:e1000112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Huang H, Winter EE, Wang H, Weinstock KG, Xing H, Goodstadt L, Stenson PD, Cooper DN, Smith D, Alba MM, Ponting CP, Fechtel K (2004) Evolutionary conservation and selection of human disease gene orthologs in the rat and mouse genomes. Genome Biol 5:R47

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lumley LA, Charles RF, Charles RC, Hebert MA, Morton DM, Meyerhoff JL (2000) Effects of social defeat and of diazepam on behavior in a resident-intruder test in male DBA/2 mice. Pharmacol Biochem Behav 67:433–447

    Article  CAS  PubMed  Google Scholar 

  18. Spitzer RL, First MB, Wakefield JC (2007) Saving PTSD from itself in DSM-V. J Anxiety Disord 21:233–241

    Article  PubMed  Google Scholar 

  19. McDonald SD, Calhoun PS (2010) The diagnostic accuracy of the PTSD checklist: a critical review. Clin Psychol Rev 30:976–987

    Article  PubMed  Google Scholar 

  20. Berger W, Mendlowicz MV, Marques-Portella C, Kinrys G, Fontenelle LF, Marmar CR, Figueira I (2009) Pharmacologic alternatives to antidepressants in posttraumatic stress disorder: a systematic review. Prog Neuropsychopharmacol Biol Psychiatry 33:169–180

    Article  CAS  PubMed  Google Scholar 

  21. Mohamed S, Rosenheck RA (2008) Pharmacotherapy of PTSD in the U.S. Department of Veterans Affairs: diagnostic- and symptom-guided drug selection. J Clin Psychiatry 69:959–965

    Article  PubMed  Google Scholar 

  22. Asnis GM, Kohn SR, Henderson M, Brown NL (2004) SSRIs versus non-SSRIs in post-traumatic stress disorder: an update with recommendations. Drugs 64:383–404

    Article  CAS  PubMed  Google Scholar 

  23. Villarreal G, Calais LA, Canive JM, Lundy SL, Pickard J, Toney G (2007) Prospective study to evaluate the efficacy of aripiprazole as a monotherapy in patients with severe chronic posttraumatic stress disorder: an open trial. Psychopharmacol Bull 40:6–18

    PubMed  Google Scholar 

  24. Chung MY, Min KH, Jun YJ, Kim SS, Kim WC, Jun EM (2004) Efficacy and tolerability of mirtazapine and sertraline in Korean veterans with posttraumatic stress disorder: a randomized open label trial. Hum Psychopharmacol 19:489–494

    Article  CAS  PubMed  Google Scholar 

  25. Tucker P, Potter-Kimball R, Wyatt DB, Parker DE, Burgin C, Jones DE, Masters BK (2003) Can physiologic assessment and side effects tease out differences in PTSD trials? A double-blind comparison of citalopram, sertraline, and placebo. Psychopharmacol Bull 37:135–149

    PubMed  Google Scholar 

  26. Lipinska G, Baldwin DS, Thomas KG (2016) Pharmacology for sleep disturbance in PTSD. Hum Psychopharmacol 31:156–163

    Article  CAS  PubMed  Google Scholar 

  27. McHugh RK, Hu MC, Campbell AN, Hilario EY, Weiss RD, Hien DA (2014) Changes in sleep disruption in the treatment of co-occurring posttraumatic stress disorder and substance use disorders. J Trauma Stress 27:82–89

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bajor LA, Ticlea AN, Osser DN (2011) The Psychopharmacology Algorithm Project at the Harvard South Shore Program: an update on posttraumatic stress disorder. Harv Rev Psychiatry 19:240–258

    Article  PubMed  Google Scholar 

  29. Zisook S, Chentsova-Dutton YE, Smith-Vaniz A, Kline NA, Ellenor GL, Kodsi AB, Gillin JC (2000) Nefazodone in patients with treatment-refractory posttraumatic stress disorder. J Clin Psychiatry 61:203–208

    Article  CAS  PubMed  Google Scholar 

  30. Griffin GD, Charron D, Al-Daccak R (2014) Post-traumatic stress disorder: revisiting adrenergics, glucocorticoids, immune system effects and homeostasis. Clin Transl Immunology 3:e27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Janak PH, Corbit LH (2011) Deepened extinction following compound stimulus presentation: noradrenergic modulation. Learn Mem 18:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hamner MB, Faldowski RA, Ulmer HG, Frueh BC, Huber MG, Arana GW (2003) Adjunctive risperidone treatment in post-traumatic stress disorder: a preliminary controlled trial of effects on comorbid psychotic symptoms. Int Clin Psychopharmacol 18:1–8

    Article  CAS  PubMed  Google Scholar 

  33. Pollack MH, Hoge EA, Worthington JJ, Moshier SJ, Wechsler RS, Brandes M, Simon NM (2011) Eszopiclone for the treatment of posttraumatic stress disorder and associated insomnia: a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry 72:892–897

    Article  CAS  PubMed  Google Scholar 

  34. Jetly R, Heber A, Fraser G, Boisvert D (2015) The efficacy of nabilone, a synthetic cannabinoid, in the treatment of PTSD-associated nightmares: A preliminary randomized, double-blind, placebo-controlled cross-over design study. Psychoneuroendocrinology 51:585–588

    Article  CAS  PubMed  Google Scholar 

  35. Cameron C, Watson D, Robinson J (2014) Use of a synthetic cannabinoid in a correctional population for posttraumatic stress disorder-related insomnia and nightmares, chronic pain, harm reduction, and other indications: a retrospective evaluation. J Clin Psychopharmacol 34:559–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shad MU, Suris AM, North CS (2011) Novel combination strategy to optimize treatment for PTSD. Hum Psychopharmacol 26:4–11

    Article  CAS  PubMed  Google Scholar 

  37. Lawford BR, Mc DYR, Noble EP, Kann B, Arnold L, Rowell J, Ritchie TL (2003) D2 dopamine receptor gene polymorphism: paroxetine and social functioning in posttraumatic stress disorder. Eur Neuropsychopharmacol 13:313–320

    Article  CAS  PubMed  Google Scholar 

  38. Koek RJ, Schwartz HN, Scully S, Langevin JP, Spangler S, Korotinsky A, Jou K, Leuchter A (2016) Treatment-refractory posttraumatic stress disorder (TRPTSD): a review and framework for the future. Prog Neuropsychopharmacol Biol Psychiatry 70:170–218

    Article  PubMed  Google Scholar 

  39. Hamner MB, Robert S, Frueh BC (2004) Treatment-resistant posttraumatic stress disorder: strategies for intervention. CNS Spectr 9:740–752

    Article  PubMed  Google Scholar 

  40. Yehuda R, Antelman SM (1993) Criteria for rationally evaluating animal models of posttraumatic stress disorder. Biol Psychiatry 33:479–486

    Article  CAS  PubMed  Google Scholar 

  41. Rasmusson AM, Charney DS (1997) Animal models of relevance to PTSD. Ann N Y Acad Sci 821:332–351

    Article  CAS  PubMed  Google Scholar 

  42. Siegmund A, Wotjak CT (2007) A mouse model of posttraumatic stress disorder that distinguishes between conditioned and sensitised fear. J Psychiatr Res 41:848–860

    Article  PubMed  Google Scholar 

  43. Daskalakis NP, Yehuda R (2014) Principles for developing animal models of military PTSD. Eur J Psychotraumatol 5

    Google Scholar 

  44. Cho JH, Lee I, Hammamieh R, Wang K, Baxter D, Scherler K, Etheridge A, Kulchenko A, Gautam A, Muhie S, Chakraborty N, Galas DJ, Jett M, Hood L (2014) Molecular evidence of stress-induced acute heart injury in a mouse model simulating posttraumatic stress disorder. Proc Natl Acad Sci U S A 111:3188–3193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hyden H, Lange PW (1970) S100 brain protein: correlation with behavior. Proc Natl Acad Sci U S A 67:1959–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chakraborty N, Meyerhoff J, Gautam A, Muhie S, Jibitu M, De Lima TC, Hammamieh R, Jett M (2015) Gene and stress history interplay in emergence of PTSD-like features. Behav Brain Res 292:266–277

    Article  PubMed  Google Scholar 

  47. Clipperton Allen AE, Cragg CL, Wood AJ, Pfaff DW, Choleris E (2010) Agonistic behavior in males and females: effects of an estrogen receptor beta agonist in gonadectomized and gonadally intact mice. Psychoneuroendocrinology 35:1008–1022

    Article  CAS  PubMed  Google Scholar 

  48. Bronson FH, Desjardins C (1968) Aggression in adult mice: modification by neonatal injections of gonadal hormones. Science 161:705–706

    Article  CAS  PubMed  Google Scholar 

  49. Simon NG, Masters DB (1987) Activation of male-typical aggression by testosterone but not its metabolites in C57BL/6J female mice. Physiol Behav 41:405–407

    Article  CAS  PubMed  Google Scholar 

  50. Whalen RE, Johnson F (1988) Aggression in adult female mice: chronic testosterone treatment induces attack against olfactory bulbectomized male and lactating female mice. Physiol Behav 43:17–20

    Article  CAS  PubMed  Google Scholar 

  51. Trainor BC, Rowland MR, Nelson RJ (2007) Photoperiod affects estrogen receptor alpha, estrogen receptor beta and aggressive behavior. Eur J Neurosci 26:207–218

    Article  PubMed  PubMed Central  Google Scholar 

  52. Trainor BC, Takahashi EY, Silva AL, Crean KK, Hostetler C (2010) Sex differences in hormonal responses to social conflict in the monogamous California mouse. Horm Behav 58:506–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Miczek KA, Maxson SC, Fish EW, Faccidomo S (2001) Aggressive behavioral phenotypes in mice. Behav Brain Res 125:167–181

    Article  CAS  PubMed  Google Scholar 

  54. Steinman MQ, Laredo SA, Lopez EM, Manning CE, Hao RC, Doig IE, Campi KL, Flowers AE, Knight JK, Trainor BC (2015) Hypothalamic vasopressin systems are more sensitive to the long term effects of social defeat in males versus females. Psychoneuroendocrinology 51:122–134

    Article  CAS  PubMed  Google Scholar 

  55. Laredo SA, Steinman MQ, Robles CF, Ferrer E, Ragen BJ, Trainor BC (2015) Effects of defeat stress on behavioral flexibility in males and females: modulation by the mu-opioid receptor. Eur J Neurosci 41:434–441

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tanaka S, Young JW, Halberstadt AL, Masten VL, Geyer MA (2012) Four factors underlying mouse behavior in an open field. Behav Brain Res 233:55–61

    Article  PubMed  Google Scholar 

  57. Blanchard EB, Kolb LC, Pallmeyer TP, Gerardi RJ (1982) A psychophysiological study of post traumatic stress disorder in Vietnam veterans. Psychiatry Q 54:220–229

    Article  CAS  Google Scholar 

  58. McFall ME, Veith RC, Murburg MM (1992) Basal sympathoadrenal function in posttraumatic distress disorder. Biol Psychiatry 31:1050–1056

    Article  CAS  PubMed  Google Scholar 

  59. Kilpatrick KL, Williams LM (1997) Post-traumatic stress disorder in child witnesses to domestic violence. Am J Orthopsychiatry 67:639–644

    Article  CAS  PubMed  Google Scholar 

  60. Cougle JR, Resnick H, Kilpatrick DG (2009) Does prior exposure to interpersonal violence increase risk of PTSD following subsequent exposure? Behav Res Ther 47:1012–1017

    Article  PubMed  PubMed Central  Google Scholar 

  61. Blanchard EB, Kuhn E, Rowell DL, Hickling EJ, Wittrock D, Rogers RL, Johnson MR, Steckler DC (2004) Studies of the vicarious traumatization of college students by the September 11th attacks: effects of proximity, exposure and connectedness. Behav Res Ther 42:191–205

    Article  PubMed  Google Scholar 

  62. Williams CE, Stevens KN (1972) Emotions and speech: some acoustical correlates. J Acoust Soc Am 52:1238–1250

    Article  CAS  PubMed  Google Scholar 

  63. Glass CR, Arnkoff DB, Wood H, Meyerhoff JL, Smith HR, Oleshansky MA, Hedges SM (1995) Cognition, anxiety, and performance on a career-related oral examination. J Couns Psychol 42:47

    Article  Google Scholar 

  64. Meyerhoff JL, Oleshansky MA, Mougey EH (1988) Effects of psychological stress on pituitary hormones in man. Adv Exp Med Biol 245:465–478

    Article  CAS  PubMed  Google Scholar 

  65. Meyerhoff JL, Oleshansky MA, Kalogeras KT, Mougey EH, Chrousos GP, Granger LG (1990) Neuroendocrine responses to emotional stress: possible interactions between circulating factors and anterior pituitary hormone release. Adv Exp Med Biol 274:91–111

    Article  CAS  PubMed  Google Scholar 

  66. Ruzanski E, Hansen JHL, Meyerhoff J, Saviolakis G, Koenig M (2005) Effects of phoneme characteristics on TEO-based automatic stress detection in speech. In: Proceedings of the international conference on speech, acoustics and signal processing (ICASSP-05), p 3

    Google Scholar 

  67. Meyerhoff JL, Hansen JHL (2007) Methods and systems for detecting, measuring and monitoring stress in speech. US Patent 7,283,962

    Google Scholar 

  68. Hansen J, Kim W, Rahurkar M, Ruzanski E, Meyerhoff JR (2011) Emotional stressed speech detection using weighted frequency subbands. EURASIP J Adv Signal Process 1:906789

    Google Scholar 

  69. Hansen JHL, Ruzanski E, Bořil H, Meyerhoff J (2012) TEO-based speaker stress assessment using hybrid classification and tracking schemes. Int Speech Technol 15(3):295–311

    Google Scholar 

  70. Warren BL, Vialou VF, Iniguez SD, Alcantara LF, Wright KN, Feng J, Kennedy PJ, Laplant Q, Shen L, Nestler EJ, Bolanos-Guzman CA (2013) Neurobiological sequelae of witnessing stressful events in adult mice. Biol Psychiatry 73:7–14

    Article  PubMed  Google Scholar 

  71. Kim EJ, Kim ES, Covey E, Kim JJ (2010) Social transmission of fear in rats: the role of 22-kHz ultrasonic distress vocalization. PLoS One 5:e15077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bourne AR, Mohan G, Stone MF, Pham MQ, Schultz CR, Meyerhoff JL, Lumley LA (2013) Olfactory cues increase avoidance behavior and induce Fos expression in the amygdala, hippocampus and prefrontal cortex of socially defeated mice. Behav Brain Res 256:188–196

    Article  CAS  PubMed  Google Scholar 

  73. Chabout J, Serreau P, Ey E, Bellier L, Aubin T, Bourgeron T, Granon S (2012) Adult male mice emit context-specific ultrasonic vocalizations that are modulated by prior isolation or group rearing environment. PLoS One 7:e29401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kassem MS, Lagopoulos J, Stait-Gardner T, Price WS, Chohan TW, Arnold JC, Hatton SN, Bennett MR (2013) Stress-induced grey matter loss determined by MRI is primarily due to loss of dendrites and their synapses. Mol Neurobiol 47:645–661

    Article  CAS  PubMed  Google Scholar 

  75. Edlow BL, McNab JA, Witzel T, Kinney HC (2016) The structural connectome of the human central homeostatic network. Brain Connect 6:187–200

    Article  PubMed  PubMed Central  Google Scholar 

  76. Salomons TV, Nusslock R, Detloff A, Johnstone T, Davidson RJ (2015) Neural emotion regulation circuitry underlying anxiolytic effects of perceived control over pain. J Cogn Neurosci 27:222–233

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sachdev RN, Champney GC, Lee H, Price RR, Pickens DR 3rd, Morgan VL, Stefansic JD, Melzer P, Ebner FF (2003) Experimental model for functional magnetic resonance imaging of somatic sensory cortex in the unanesthetized rat. Neuroimage 19:742–750

    Article  PubMed  Google Scholar 

  78. King JA, Garelick TS, Brevard ME, Chen W, Messenger TL, Duong TQ, Ferris CF (2005) Procedure for minimizing stress for fMRI studies in conscious rats. J Neurosci Methods 148:154–160

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ferris CF, Stolberg T (2010) Imaging the immediate non-genomic effects of stress hormone on brain activity. Psychoneuroendocrinology 35:5–14

    Article  CAS  PubMed  Google Scholar 

  80. Lee T, Jarome T, Li SJ, Kim JJ, Helmstetter FJ (2009) Chronic stress selectively reduces hippocampal volume in rats: a longitudinal magnetic resonance imaging study. Neuroreport 20:1554–1558

    Article  PubMed  PubMed Central  Google Scholar 

  81. Liang Z, King J, Zhang N (2014) Neuroplasticity to a single-episode traumatic stress revealed by resting-state fMRI in awake rats. Neuroimage 103:485–491

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kalisch R, Salome N, Platzer S, Wigger A, Czisch M, Sommer W, Singewald N, Heilig M, Berthele A, Holsboer F, Landgraf R, Auer DP (2004) High trait anxiety and hyporeactivity to stress of the dorsomedial prefrontal cortex: a combined phMRI and Fos study in rats. Neuroimage 23:382–391

    Article  PubMed  Google Scholar 

  83. Bangasser DA, Lee CS, Cook PA, Gee JC, Bhatnagar S, Valentino RJ (2013) Manganese-enhanced magnetic resonance imaging (MEMRI) reveals brain circuitry involved in responding to an acute novel stress in rats with a history of repeated social stress. Physiol Behav 122:228–236

    Article  CAS  PubMed  Google Scholar 

  84. McGuire JL, Bergstrom HC, Parker CC, Le T, Morgan M, Tang H, Selwyn RG, Silva AC, Choi K, Ursano RJ, Palmer AA, Johnson LR (2013) Traits of fear resistance and susceptibility in an advanced intercross line. Eur J Neurosci 38:3314–3324

    Article  PubMed  Google Scholar 

  85. Siegmund A, Kaltwasser SF, Holsboer F, Czisch M, Wotjak CT (2009) Hippocampal N-acetylaspartate levels before trauma predict the development of long-lasting posttraumatic stress disorder-like symptoms in mice. Biol Psychiatry 65:258–262

    Article  CAS  PubMed  Google Scholar 

  86. Zhou IY, Ding AY, Li Q, McAlonan GM, Wu EX (2012) Magnetic resonance spectroscopy reveals N-acetylaspartate reduction in hippocampus and cingulate cortex after fear conditioning. Psychiatry Res 204:178–183

    Article  CAS  PubMed  Google Scholar 

  87. Ding AY, Li Q, Zhou IY, Ma SJ, Tong G, McAlonan GM, Wu EX (2013) MR diffusion tensor imaging detects rapid microstructural changes in amygdala and hippocampus following fear conditioning in mice. PLoS One 8:e51704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Maletic-Savatic M, Malinow R, Svoboda K (1999) Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283:1923–1927

    Article  CAS  PubMed  Google Scholar 

  89. Maren S, Quirk GJ (2004) Neuronal signalling of fear memory. Nat Rev Neurosci 5:844–852

    Article  CAS  PubMed  Google Scholar 

  90. Young KA, Thompson PM, Cruz DA, Williamson DE, Selemon LD (2015) BA11 FKBP5 expression levels correlate with dendritic spine density in postmortem PTSD and controls. Neurobiol Stress 2:67–72

    Article  PubMed  PubMed Central  Google Scholar 

  91. Yuen EY, Liu W, Karatsoreos IN, Ren Y, Feng J, McEwen BS, Yan Z (2011) Mechanisms for acute stress-induced enhancement of glutamatergic transmission and working memory. Mol Psychiatry 16:156–170

    Article  CAS  PubMed  Google Scholar 

  92. Moench KM, Wellman CL (2015) Stress-induced alterations in prefrontal dendritic spines: Implications for post-traumatic stress disorder. Neurosci Lett 601:41–45

    Article  CAS  PubMed  Google Scholar 

  93. Radley JJ, Rocher AB, Miller M, Janssen WG, Liston C, Hof PR, McEwen BS, Morrison JH (2006) Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex 16:313–320

    Article  PubMed  Google Scholar 

  94. Michelsen KA, van den Hove DL, Schmitz C, Segers O, Prickaerts J, Steinbusch HW (2007) Prenatal stress and subsequent exposure to chronic mild stress influence dendritic spine density and morphology in the rat medial prefrontal cortex. BMC Neurosci 8:107

    Article  PubMed  PubMed Central  Google Scholar 

  95. Martin KP, Wellman CL (2011) NMDA receptor blockade alters stress-induced dendritic remodeling in medial prefrontal cortex. Cereb Cortex 21:2366–2373

    Article  PubMed  PubMed Central  Google Scholar 

  96. Mitra R, Adamec R, Sapolsky R (2009) Resilience against predator stress and dendritic morphology of amygdala neurons. Behav Brain Res 205:535–543

    Article  PubMed  PubMed Central  Google Scholar 

  97. Vyas A, Pillai AG, Chattarji S (2004) Recovery after chronic stress fails to reverse amygdaloid neuronal hypertrophy and enhanced anxiety-like behavior. Neuroscience 128:667–673

    Article  CAS  PubMed  Google Scholar 

  98. McKittrick CR, Magarinos AM, Blanchard DC, Blanchard RJ, McEwen BS, Sakai RR (2000) Chronic social stress reduces dendritic arbors in CA3 of hippocampus and decreases binding to serotonin transporter sites. Synapse 36:85–94

    Article  CAS  PubMed  Google Scholar 

  99. Watanabe Y, Gould E, McEwen BS (1992) Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res 588:341–345

    Article  CAS  PubMed  Google Scholar 

  100. Sapolsky RM, Krey LC, McEwen BS (1985) Prolonged glucocorticoid exposure reduces hippocampal neuron number: implications for aging. J Neurosci 5:1222–1227

    CAS  PubMed  Google Scholar 

  101. Radley JJ, Morrison JH (2005) Repeated stress and structural plasticity in the brain. Ageing Res Rev 4:271–287

    Article  PubMed  Google Scholar 

  102. Rochefort NL, Konnerth A (2012) Dendritic spines: from structure to in vivo function. EMBO Rep 13:699–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. McEwen BS, Morrison JH (2013) The brain on stress: vulnerability and plasticity of the prefrontal cortex over the life course. Neuron 79:16–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shin LM, Rauch SL, Pitman RK (2006) Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann N Y Acad Sci 1071:67–79

    Article  PubMed  Google Scholar 

  105. Kasai K, Yamasue H, Gilbertson MW, Shenton ME, Rauch SL, Pitman RK (2008) Evidence for acquired pregenual anterior cingulate gray matter loss from a twin study of combat-related posttraumatic stress disorder. Biol Psychiatry 63:550–556

    Article  PubMed  Google Scholar 

  106. Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER (2013) The next-generation sequencing revolution and its impact on genomics. Cell 155:27–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX, Krueger F, Smallwood SA, Ponting CP, Voet T, Kelsey G, Stegle O, Reik W (2016) Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods 13(3):229–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Takahashi H, Morioka R, Ito R, Oshima T, Altaf-Ul-Amin M, Ogasawara N, Kanaya S (2011) Dynamics of time-lagged gene-to-metabolite networks of Escherichia coli elucidated by integrative omics approach. Omics 15:15–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Petrey D, Honig B (2014) Structural bioinformatics of the interactome. Annu Rev Biophys 43:193–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Russell RB, Aloy P (2008) Targeting and tinkering with interaction networks. Nat Chem Biol 4:666–673

    Article  CAS  PubMed  Google Scholar 

  111. Yang MQ, Yoshigoe K, Yang W, Tong W, Qin X, Dunker A, Chen Z, Arbania HR, Liu JS, Niemierko A, Yang JY (2014) The emerging genomics and systems biology research lead to systems genomics studies. BMC Genomics 15(Suppl 11):I1

    Article  PubMed  PubMed Central  Google Scholar 

  112. Nicholson JK (2006) Global systems biology, personalized medicine and molecular epidemiology. Mol Syst Biol 2:52

    Article  PubMed  PubMed Central  Google Scholar 

  113. O'Donnell ML, Elliott P, Lau W, Creamer M (2007) PTSD symptom trajectories: from early to chronic response. Behav Res Ther 45:601–606

    Article  PubMed  Google Scholar 

  114. Peleg T, Shalev AY (2006) Longitudinal studies of PTSD: overview of findings and methods. CNS Spectr 11:589–602

    Article  PubMed  Google Scholar 

  115. Keane TM, Kaloupek DG (1997) Comorbid psychiatric disorders in PTSD. Implications for research. Ann N Y Acad Sci 821:24–34

    Article  CAS  PubMed  Google Scholar 

  116. Brady KT, McCauley JL, Back SE (2016) Prescription opioid misuse, abuse, and treatment in the United States: an update. Am J Psychiatry 173:18–26

    Article  PubMed  Google Scholar 

  117. Whitaker AM, Gilpin NW, Edwards S (2014) Animal models of post-traumatic stress disorder and recent neurobiological insights. Behav Pharmacol 25:398–409

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Burton D, Foy D, Bwanausi C, Johnson J, Moore L (1994) The relationship between traumatic exposure, family dysfunction, and post-traumatic stress symptoms in male juvenile offenders. J Trauma Stress 7:83–93

    Article  CAS  PubMed  Google Scholar 

  119. Bremner JD, Randall P, Scott TM, Bronen RA, Seibyl JP, Southwick SM, Delaney RC, McCarthy G, Charney DS, Innis RB (1995) MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am J Psychiatry 152:973–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Woodward MJ, Eddinger J, Henschel AV, Dodson TS, Tran HN, Beck JG (2015) Social support, posttraumatic cognitions, and PTSD: the influence of family, friends, and a close other in an interpersonal and non-interpersonal trauma group. J Anxiety Disord 35:60–67

    Article  PubMed  Google Scholar 

  121. Jobe-Shields L, Flanagan JC, Killeen T, Back SE (2015) Family composition and symptom severity among Veterans with comorbid PTSD and substance use disorders. Addict Behav 50:117–123

    Article  PubMed  PubMed Central  Google Scholar 

  122. Deng LX, Khan AM, Drajpuch D, Fuller S, Ludmir J, Mascio CE, Partington SL, Qadeer A, Tobin L, Kovacs AH, Kim YY (2016) Prevalence and correlates of post-traumatic stress disorder in adults with congenital heart disease. Am J Cardiol 117:853–857

    Article  PubMed  Google Scholar 

  123. Roy SS, Foraker RE, Girton RA, Mansfield AJ (2015) Posttraumatic stress disorder and incident heart failure among a community-based sample of US veterans. Am J Public Health 105:757–763

    Article  PubMed  PubMed Central  Google Scholar 

  124. Wentworth BA, Stein MB, Redwine LS, Xue Y, Taub PR, Clopton P, Nayak KR, Maisel AS (2013) Post-traumatic stress disorder: a fast track to premature cardiovascular disease? Cardiol Rev 21:16–22

    Article  PubMed  Google Scholar 

  125. Landgraf D, McCarthy MJ, Welsh DK (2014) Circadian clock and stress interactions in the molecular biology of psychiatric disorders. Curr Psychiatry Rep 16:483

    Article  PubMed  Google Scholar 

  126. Richards RS, Nwose EU, Bwititi P (2011) Biochemical basis of circadian rhythms and diseases: with emphasis on post-traumatic stress disorder. Med Hypotheses 77:605–609

    Article  CAS  PubMed  Google Scholar 

  127. Colvonen PJ, Masino T, Drummond SP, Myers US, Angkaw AC, Norman SB (2015) Obstructive sleep apnea and posttraumatic stress disorder among OEF/OIF/OND veterans. J Clin Sleep Med 11:513–518

    PubMed  PubMed Central  Google Scholar 

  128. Werner HM, Mills GB, Ram PT (2014) Cancer Systems Biology: a peek into the future of patient care? Nat Rev Clin Oncol 11:167–176

    Article  PubMed  PubMed Central  Google Scholar 

  129. Priest NK, Rudkin JK, Feil EJ, van den Elsen JM, Cheung A, Peacock SJ, Laabei M, Lucks DA, Recker M, Massey RC (2012) From genotype to phenotype: can systems biology be used to predict Staphylococcus aureus virulence? Nat Rev Microbiol 10:791–797

    Article  CAS  PubMed  Google Scholar 

  130. Mason JW, Giller EL, Kosten TR, Ostroff RB, Podd L (1986) Urinary free-cortisol levels in posttraumatic stress disorder patients. J Nerv Ment Dis 174:145–149

    Article  CAS  PubMed  Google Scholar 

  131. Smith MA, Davidson J, Ritchie JC, Kudler H, Lipper S, Chappell P, Nemeroff CB (1989) The corticotropin-releasing hormone test in patients with posttraumatic stress disorder. Biol Psychiatry 26:349–355

    Article  CAS  PubMed  Google Scholar 

  132. Carroll BJ (1982) The dexamethasone suppression test for melancholia. Br J Psychiatry 140:292–304

    Article  CAS  PubMed  Google Scholar 

  133. Yehuda R, Boisoneau D, Mason JW, Giller EL (1993) Glucocorticoid receptor number and cortisol excretion in mood, anxiety, and psychotic disorders. Biol Psychiatry 34:18–25

    Article  CAS  PubMed  Google Scholar 

  134. Yehuda R, Southwick SM, Krystal JH, Bremner D, Charney DS, Mason JW (1993) Enhanced suppression of cortisol following dexamethasone administration in posttraumatic stress disorder. Am J Psychiatry 150:83–86

    Article  CAS  PubMed  Google Scholar 

  135. Pariante CM, Miller AH (2001) Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry 49:391–404

    Article  CAS  PubMed  Google Scholar 

  136. Yehuda R, Teicher MH, Trestman RL, Levengood RA, Siever LJ (1996) Cortisol regulation in posttraumatic stress disorder and major depression: a chronobiological analysis. Biol Psychiatry 40:79–88

    Article  CAS  PubMed  Google Scholar 

  137. Flory JD, Yehuda R (2015) Comorbidity between post-traumatic stress disorder and major depressive disorder: alternative explanations and treatment considerations. Dialogues Clin Neurosci 17:141–150

    PubMed  PubMed Central  Google Scholar 

  138. Hoge, C.W., Castro, C.A., Messer, S.C., McGurk, D., Cotting, D.I. and Koffman, R.L., (2004) Combat duty in Iraq and Afghanistan, mental health problems, and barriers to care. N Engl J Med 351(1):13–22

    Google Scholar 

  139. Hoge CW, Auchterlonie JL, Milliken CS (2006) Mental health problems, use of mental health services, and attrition from military service after returning from deployment to Iraq or Afghanistan. JAMA 295:1023–1032

    Article  CAS  PubMed  Google Scholar 

  140. Stein MB, Jang KL, Taylor S, Vernon PA, Livesley WJ (2002) Genetic and environmental influences on trauma exposure and posttraumatic stress disorder symptoms: a twin study. Am J Psychiatry 159:1675–1681

    Article  PubMed  Google Scholar 

  141. Goldberg J, True WR, Eisen SA, Henderson WG (1990) A twin study of the effects of the Vietnam War on posttraumatic stress disorder. JAMA 263:1227–1232

    Article  CAS  PubMed  Google Scholar 

  142. Kremen WS, Koenen KC, Afari N, Lyons MJ (2012) Twin studies of posttraumatic stress disorder: differentiating vulnerability factors from sequelae. Neuropharmacology 62:647–653

    Article  CAS  PubMed  Google Scholar 

  143. Kang HJ, Yoon S, Lyoo IK (2015) Peripheral biomarker candidates of posttraumatic stress disorder. Exp Neurobiol 24:186–196

    Article  PubMed  PubMed Central  Google Scholar 

  144. Zoladz PR, Diamond DM (2013) Current status on behavioral and biological markers of PTSD: a search for clarity in a conflicting literature. Neurosci Biobehav Rev 37:860–895

    Article  PubMed  Google Scholar 

  145. de Kloet CS, Vermetten E, Geuze E, Kavelaars A, Heijnen CJ, Westenberg HG (2006) Assessment of HPA-axis function in posttraumatic stress disorder: pharmacological and non-pharmacological challenge tests, a review. J Psychiatr Res 40:550–567

    Article  PubMed  Google Scholar 

  146. Rasmusson AM, Vythilingam M, Morgan CA 3rd (2003) The neuroendocrinology of posttraumatic stress disorder: new directions. CNS Spectr 8(651–656):665–657

    Google Scholar 

  147. Sofuoglu M, Sewell RA (2009) Norepinephrine and stimulant addiction. Addict Biol 14:119–129

    Article  CAS  PubMed  Google Scholar 

  148. Schmidt KT, Weinshenker D (2014) Adrenaline rush: the role of adrenergic receptors in stimulant-induced behaviors. Mol Pharmacol 85:640–650

    Article  PubMed  PubMed Central  Google Scholar 

  149. Reichmann F, Holzer P (2016) Neuropeptide Y: a stressful review. Neuropeptides 55:99–109

    Article  CAS  PubMed  Google Scholar 

  150. Tasan RO, Verma D, Wood J, Lach G, Hormer B, de Lima TC, Herzog H, Sperk G (2016) The role of Neuropeptide Y in fear conditioning and extinction. Neuropeptides 55:111–126

    Article  CAS  PubMed  Google Scholar 

  151. Wilson CB, Ebenezer PJ, McLaughlin LD, Francis J (2014) Predator exposure/psychosocial stress animal model of post-traumatic stress disorder modulates neurotransmitters in the rat hippocampus and prefrontal cortex. PLoS One 9:e89104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Rohleder N, Karl A (2006) Role of endocrine and inflammatory alterations in comorbid somatic diseases of post-traumatic stress disorder. Minerva Endocrinol 31:273–288

    CAS  PubMed  Google Scholar 

  153. Passos IC, Vasconcelos-Moreno MP, Costa LG, Kunz M, Brietzke E, Quevedo J, Salum G, Magalhaes PV, Kapczinski F, Kauer-Sant'Anna M (2015) Inflammatory markers in post-traumatic stress disorder: a systematic review, meta-analysis, and meta-regression. Lancet Psychiatry 2:1002–1012

    Article  PubMed  Google Scholar 

  154. Michopoulos V, Norrholm SD, Jovanovic T (2015) Diagnostic biomarkers for posttraumatic stress disorder: promising horizons from translational neuroscience research. Biol Psychiatry 78:344–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yehuda R, Koenen KC, Galea S, Flory JD (2011) The role of genes in defining a molecular biology of PTSD. Dis Markers 30:67–76

    Article  PubMed  PubMed Central  Google Scholar 

  156. Di Croce L, Buschbeck M, Gutierrez A, Joval I, Morey L, Villa R, Minucci S (2004) Altered epigenetic signals in human disease. Cancer Biol Ther 3:831–837

    Article  CAS  PubMed  Google Scholar 

  157. Cortese R, Lu L, Yu Y, Ruden D, Claud EC (2016) Epigenome-Microbiome crosstalk: a potential new paradigm influencing neonatal susceptibility to disease. Epigenetics 11(3):205–215

    Article  PubMed  PubMed Central  Google Scholar 

  158. Zannas AS, Provencal N, Binder EB (2015) Epigenetics of posttraumatic stress disorder: current evidence, challenges, and future directions. Biol Psychiatry 78:327–335

    Article  CAS  PubMed  Google Scholar 

  159. Heinzelmann M, Gill J (2013) Epigenetic mechanisms shape the biological response to trauma and risk for PTSD: a critical review. Nurs Res Pract 2013:417010

    PubMed  PubMed Central  Google Scholar 

  160. Breen MS, Maihofer AX, Glatt SJ, Tylee DS, Chandler SD, Tsuang MT, Risbrough VB, Baker DG, O'Connor DT, Nievergelt CM, Woelk CH (2015) Gene networks specific for innate immunity define post-traumatic stress disorder. Mol Psychiatry 20:1538–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Uddin M, Aiello AE, Wildman DE, Koenen KC, Pawelec G, de Los Santos R, Goldmann E, Galea S (2010) Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proc Natl Acad Sci U S A 107:9470–9475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Rusiecki JA, Byrne C, Galdzicki Z, Srikantan V, Chen L, Poulin M, Yan L, Baccarelli A (2013) PTSD and DNA methylation in select immune function gene promoter regions: a repeated measures case-control study of U.S. Military Service Members. Front Psychiatry 4:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Yehuda R, Flory JD, Bierer LM, Henn-Haase C, Lehrner A, Desarnaud F, Makotkine I, Daskalakis NP, Marmar CR, Meaney MJ (2015) Lower methylation of glucocorticoid receptor gene promoter 1F in peripheral blood of veterans with posttraumatic stress disorder. Biol Psychiatry 77:356–364

    Article  CAS  PubMed  Google Scholar 

  164. Castro-Vale I, van Rossum EF, Machado JC, Mota-Cardoso R, Carvalho D (2016) Genetics of glucocorticoid regulation and posttraumatic stress disorder-What do we know? Neurosci Biobehav Rev 63:143–157

    Article  CAS  PubMed  Google Scholar 

  165. Bersani FS, Morley C, Lindqvist D, Epel ES, Picard M, Yehuda R, Flory J, Bierer LM, Makotkine I, Abu-Amara D, Coy M, Reus VI, Lin J, Blackburn EH, Marmar C, Wolkowitz OM, Mellon SH (2016) Mitochondrial DNA copy number is reduced in male combat veterans with PTSD. Prog Neuropsychopharmacol Biol Psychiatry 64:10–17

    Article  CAS  PubMed  Google Scholar 

  166. Wilson CB, McLaughlin LD, Nair A, Ebenezer PJ, Dange R, Francis J (2013) Inflammation and oxidative stress are elevated in the brain, blood, and adrenal glands during the progression of post-traumatic stress disorder in a predator exposure animal model. PLoS One 8:e76146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Jergovic M, Tomicevic M, Vidovic A, Bendelja K, Savic A, Vojvoda V, Rac D, Lovric-Cavar D, Rabatic S, Jovanovic T, Sabioncello A (2014) Telomere shortening and immune activity in war veterans with posttraumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry 54:275–283

    Article  CAS  PubMed  Google Scholar 

  168. Karabatsiakis A, Hamuni G, Wilker S, Kolassa S, Renu D, Kadereit S, Schauer M, Hennessy T, Kolassa IT (2015) Metabolite profiling in posttraumatic stress disorder. J Mol Psychiatry 3:2

    Article  PubMed  PubMed Central  Google Scholar 

  169. Bersani FS, Wolkowitz OM, Lindqvist D, Yehuda R, Flory J, Bierer LM, Makotine I, Abu-Amara D, Coy M, Reus VI, Epel ES, Marmar C, Mellon SH (2016) Global arginine bioavailability, a marker of nitric oxide synthetic capacity, is decreased in PTSD and correlated with symptom severity and markers of inflammation. Brain Behav Immun 52:153–160

    Article  CAS  PubMed  Google Scholar 

  170. Butler RK, Oliver EM, Sharko AC, Parilla-Carrero J, Kaigler KF, Fadel JR, Wilson MA (2016) Activation of corticotropin releasing factor-containing neurons in the rat central amygdala and bed nucleus of the stria terminalis following exposure to two different anxiogenic stressors. Behav Brain Res 304:92–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Rao RP, Anilkumar S, McEwen BS, Chattarji S (2012) Glucocorticoids protect against the delayed behavioral and cellular effects of acute stress on the amygdala. Biol Psychiatry 72:466–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ponomarev I, Rau V, Eger EI, Harris RA, Fanselow MS (2010) Amygdala transcriptome and cellular mechanisms underlying stress-enhanced fear learning in a rat model of posttraumatic stress disorder. Neuropsychopharmacology 35:1402–1411

    Article  PubMed  PubMed Central  Google Scholar 

  173. Kohda K, Harada K, Kato K, Hoshino A, Motohashi J, Yamaji T, Morinobu S, Matsuoka N, Kato N (2007) Glucocorticoid receptor activation is involved in producing abnormal phenotypes of single-prolonged stress rats: a putative post-traumatic stress disorder model. Neuroscience 148:22–33

    Article  CAS  PubMed  Google Scholar 

  174. Yehuda R, Golier JA, Yang RK, Tischler L (2004) Enhanced sensitivity to glucocorticoids in peripheral mononuclear leukocytes in posttraumatic stress disorder. Biol Psychiatry 55:1110–1116

    Article  CAS  PubMed  Google Scholar 

  175. Kawamura N, Kim Y, Asukai N (2001) Suppression of cellular immunity in men with a past history of posttraumatic stress disorder. Am J Psychiatry 158:484–486

    Article  CAS  PubMed  Google Scholar 

  176. von Kanel R, Hepp U, Kraemer B, Traber R, Keel M, Mica L, Schnyder U (2007) Evidence for low-grade systemic proinflammatory activity in patients with posttraumatic stress disorder. J Psychiatr Res 41:744–752

    Article  Google Scholar 

  177. Weaver IC, Cervoni N, Champagne FA, D'Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854

    Article  CAS  PubMed  Google Scholar 

  178. Cohen H, Zohar J, Matar M (2003) The relevance of differential response to trauma in an animal model of posttraumatic stress disorder. Biol Psychiatry 53:463–473

    Article  PubMed  Google Scholar 

  179. Fikretoglu D, Liu A (2012) Prevalence, correlates, and clinical features of delayed-onset posttraumatic stress disorder in a nationally representative military sample. Soc Psychiatry Psychiatr Epidemiol 47:1359–1366

    Article  PubMed  Google Scholar 

  180. Carola V, D'Olimpio F, Brunamonti E, Mangia F, Renzi P (2002) Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav Brain Res 134:49–57

    Article  PubMed  Google Scholar 

  181. Moura PJ, Meirelles ST, Xavier GF (2010) Long-term social recognition memory in adult male rats: factor analysis of the social and non-social behaviors. Braz J Med Biol Res 43:663–676

    Article  CAS  PubMed  Google Scholar 

  182. O'Leary TP, Gunn RK, Brown RE (2013) What are we measuring when we test strain differences in anxiety in mice? Behav Genet 43:34–50

    Article  PubMed  Google Scholar 

  183. Kanari K, Kikusui T, Takeuchi Y, Mori Y (2005) Multidimensional structure of anxiety-related behavior in early-weaned rats. Behav Brain Res 156:45–52

    Article  PubMed  Google Scholar 

  184. Cohen H, Kozlovsky N, Alona C, Matar MA, Joseph Z (2012) Animal model for PTSD: from clinical concept to translational research. Neuropharmacology 62:715–724

    Article  CAS  PubMed  Google Scholar 

  185. Cohen H, Zohar J, Matar MA, Kaplan Z, Geva AB (2005) Unsupervised fuzzy clustering analysis supports behavioral cutoff criteria in an animal model of posttraumatic stress disorder. Biol Psychiatry 58:640–650

    Article  PubMed  Google Scholar 

  186. Cohen H, Zohar J (2004) An animal model of posttraumatic stress disorder: the use of cut-off behavioral criteria. Ann N Y Acad Sci 1032:167–178

    Article  PubMed  Google Scholar 

  187. Emmert-Streib F, Dehmer M (2011) Networks for systems biology: conceptual connection of data and function. IET Syst Biol 5:185–207

    Article  CAS  PubMed  Google Scholar 

  188. Pujol A, Mosca R, Farres J, Aloy P (2010) Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol Sci 31:115–123

    Article  CAS  PubMed  Google Scholar 

  189. Panagiotou G, Taboureau O (2012) The impact of network biology in pharmacology and toxicology. SAR QSAR Environ Res 23:221–235

    Article  CAS  PubMed  Google Scholar 

  190. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278

    Article  CAS  PubMed  Google Scholar 

  191. Liu X, Yu X, Zack DJ, Zhu H, Qian J (2008) TiGER: a database for tissue-specific gene expression and regulation. BMC Bioinformatics 9:271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, Wiencke JK, Kelsey KT (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13:86

    Article  PubMed  PubMed Central  Google Scholar 

  193. Kramer A, Green J, Pollard J Jr, Tugendreich S (2014) Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 30:523–530

    Article  PubMed  CAS  Google Scholar 

  194. Hu Z, Hung JH, Wang Y, Chang YC, Huang CL, Huyck M, DeLisi C (2009) VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucleic Acids Res 37:W115–W121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Breitkreutz BJ, Stark C, Tyers M (2003) Osprey: a network visualization system. Genome Biol 4:R22

    Article  PubMed  PubMed Central  Google Scholar 

  196. Kamburov A, Cavill R, Ebbels TM, Herwig R, Keun HC (2011) Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA. Bioinformatics 27:2917–2918

    Article  CAS  PubMed  Google Scholar 

  197. Jimenez-Marin A, Collado-Romero M, Ramirez-Boo M, Arce C, Garrido JJ (2009) Biological pathway analysis by ArrayUnlock and Ingenuity Pathway Analysis. BMC Proc 3(Suppl 4):S6

    Article  PubMed  PubMed Central  Google Scholar 

  198. Pavlopoulos GA, Malliarakis D, Papanikolaou N, Theodosiou T, Enright AJ, Iliopoulos I (2015) Visualizing genome and systems biology: technologies, tools, implementation techniques and trends, past, present and future. Gigascience 4:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Suderman M, Hallett M (2007) Tools for visually exploring biological networks. Bioinformatics 23:2651–2659

    Article  CAS  PubMed  Google Scholar 

  200. Yang R, Daigle BJ Jr, Petzold LR, Doyle FJ 3rd (2012) Core module biomarker identification with network exploration for breast cancer metastasis. BMC Bioinformatics 13:12

    Article  PubMed  PubMed Central  Google Scholar 

  201. Roth W, Hecker D, Fava E (2016) Systems biology approaches to the study of biological networks underlying Alzheimer’s disease: role of miRNAs. Methods Mol Biol 1303:349–377

    Article  PubMed  Google Scholar 

  202. Juhasz G, Foldi I, Penke B (2011) Systems biology of Alzheimer’s disease: how diverse molecular changes result in memory impairment in AD. Neurochem Int 58:739–750

    Article  CAS  PubMed  Google Scholar 

  203. Thakur GS, Daigle BJ Jr, Dean KR, Zhang Y, Rodriguez-Fernandez M, Hammamieh R, Yang R, Jett M, Palma J, Petzold LR, Doyle FJ 3rd (2015) Systems biology approach to understanding post-traumatic stress disorder. Mol Biosyst 11:980–993

    Article  CAS  PubMed  Google Scholar 

  204. Kalueff AV, Tuohimaa P (2005) Mouse grooming microstructure is a reliable anxiety marker bidirectionally sensitive to GABAergic drugs. Eur J Pharmacol 508:147–153

    Article  CAS  PubMed  Google Scholar 

  205. Muhie S, Gautam A, Meyerhoff J, Chakraborty N, Hammamieh R, Jett M (2015) Brain transcriptome profiles in mouse model simulating features of post-traumatic stress disorder. Mol Brain 8:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Gautam A, D'Arpa P, Donohue DE, Muhie S, Chakraborty N, Luke BT, Grapov D, Carroll EE, Meyerhoff JL, Hammamieh R, Jett M (2015) Acute and chronic plasma metabolomic and liver transcriptomic stress effects in a mouse model with features of post-traumatic stress disorder. PLoS One 10:e0117092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Zhang L, Li H, Hu X, Benedek DM, Fullerton CS, Forsten RD, Naifeh JA, Li X, Wu H, Benevides KN, Le T, Smerin S, Russell DW, Ursano RJ (2015) Mitochondria-focused gene expression profile reveals common pathways and CPT1B dysregulation in both rodent stress model and human subjects with PTSD. Transl Psychiatry 5:e580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Stewart AM, Kalueff AV (2015) Developing better and more valid animal models of brain disorders. Behav Brain Res 276:28–31

    Article  PubMed  Google Scholar 

  209. (2011) Building a better mouse test. Nat Methods 8:697

    Google Scholar 

  210. Henn FA, Vollmayr B (2005) Stress models of depression: forming genetically vulnerable strains. Neurosci Biobehav Rev 29:799–804

    Article  PubMed  Google Scholar 

  211. Fonio E, Golani I, Benjamini Y (2012) Measuring behavior of animal models: faults and remedies. Nat Methods 9:1167–1170

    Article  CAS  PubMed  Google Scholar 

  212. Croft AP, Brooks SP, Cole J, Little HJ (2005) Social defeat increases alcohol preference of C57BL/10 strain mice; effect prevented by a CCKB antagonist. Psychopharmacology (Berl) 183:163–170

    Article  CAS  Google Scholar 

  213. Yang X, Wang S, Rice KC, Munro CA, Wand GS (2008) Restraint stress and ethanol consumption in two mouse strains. Alcohol Clin Exp Res 32:840–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Krishnan V, Han MH, Graham DL, Berton O, Renthal W, Russo SJ, Laplant Q, Graham A, Lutter M, Lagace DC, Ghose S, Reister R, Tannous P, Green TA, Neve RL, Chakravarty S, Kumar A, Eisch AJ, Self DW, Lee FS, Tamminga CA, Cooper DC, Gershenfeld HK, Nestler EJ (2007) Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131:391–404

    Article  CAS  PubMed  Google Scholar 

  215. Russo SJ, Murrough JW, Han MH, Charney DS, Nestler EJ (2012) Neurobiology of resilience. Nat Neurosci 15:1475–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10:735–742

    Article  CAS  PubMed  Google Scholar 

  217. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712

    Article  CAS  PubMed  Google Scholar 

  218. Moloney RD, Desbonnet L, Clarke G, Dinan TG, Cryan JF (2014) The microbiome: stress, health and disease. Mamm Genome 25:49–74

    Article  CAS  PubMed  Google Scholar 

  219. Burokas A, Moloney RD, Dinan TG, Cryan JF (2015) Microbiota regulation of the Mammalian gut-brain axis. Adv Appl Microbiol 91:1–62

    Article  PubMed  Google Scholar 

  220. Hunter RG, Gagnidze K, McEwen BS, Pfaff DW (2015) Stress and the dynamic genome: steroids, epigenetics, and the transposome. Proc Natl Acad Sci U S A 112:6828–6833

    Article  CAS  PubMed  Google Scholar 

  221. Rusiecki JA, Chen L, Srikantan V, Zhang L, Yan L, Polin ML, Baccarelli A (2012) DNA methylation in repetitive elements and post-traumatic stress disorder: a case-control study of US military service members. Epigenomics 4:29–40

    Article  CAS  PubMed  Google Scholar 

  222. Ponomarev I, Wang S, Zhang L, Harris RA, Mayfield RD (2012) Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J Neurosci 32:1884–1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Hunter RG, McEwen BS, Pfaff DW (2013) Environmental stress and transposon transcription in the mammalian brain. Mob Genet Elements 3:e24555

    Article  PubMed  PubMed Central  Google Scholar 

  224. Reilly MT, Faulkner GJ, Dubnau J, Ponomarev I, Gage FH (2013) The role of transposable elements in health and diseases of the central nervous system. J Neurosci 33:17577–17586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasha Hammamieh Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Chakraborty, N., Meyerhoff, J., Jett, M., Hammamieh, R. (2017). Genome to Phenome: A Systems Biology Approach to PTSD Using an Animal Model. In: Kobeissy, F., Stevens, Jr., S. (eds) Neuroproteomics. Methods in Molecular Biology, vol 1598. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6952-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6952-4_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6950-0

  • Online ISBN: 978-1-4939-6952-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics