Skip to main content

KillerRed as a Tool to Study the Cellular Responses to Peroxisome-Derived Oxidative Stress

  • Protocol
  • First Online:
Peroxisomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1595))

Abstract

Many biological processes and cell fate decisions are modulated by changes in redox environment. To gain insight into how subcellular compartmentalization of reactive oxygen species (ROS) formation contributes to (site-specific) redox signaling and oxidative stress responses, it is critical to have access to tools that allow tight spatial and temporal control of ROS production. Over the past decade, the use of genetically encoded photosensitizers has attracted growing interest of researchers because these proteins can be easily targeted to various subcellular compartments and allow for controlled release of ROS when excited by light. This chapter provides guidance and practical advice on the use of po-KR, a peroxisomal variant of the phototoxic red fluorescent protein KillerRed, to address fundamental questions about how mammalian cells cope with peroxisome-derived oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forman HJ, Maiorino M, Ursini F (2010) Signaling functions of reactive oxygen species. Biochemistry 49:835–842. doi:10.1021/bi9020378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Holmström KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signaling. Nat Rev Mol Cell Biol 15:411–421. doi:10.1038/nrm3801

    Article  PubMed  Google Scholar 

  3. Maryanovich M, Gross A (2013) A ROS rheostat for cell fate regulation. Trends Cell Biol 23:129–134. doi:10.1016/j.tcb.2012.09.007

    Article  CAS  PubMed  Google Scholar 

  4. Liang R, Ghaffari S (2014) Stem cells, redox signaling, and stem cell aging. Antioxid Redox Signal 20:1902–1916. doi:10.1089/ars.2013.5300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Trachootham D, Lu W, Ogasawara MA et al (2008) Redox regulation of cell survival. Antioxid Redox Signal 10:1343–1374. doi:10.1089/ars.2007.1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dan Dunn J, Alvarez LA, Zhang X et al (2015) Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol 6:472–485. doi:10.1016/j.redox.2015.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Delaunay-Moisan A, Appenzeller-Herzog C (2015) The antioxidant machinery of the endoplasmic reticulum: protection and signaling. Free Radic Biol Med 83:341–351. doi:10.1016/j.freeradbiomed.2015.02.019

    Article  CAS  PubMed  Google Scholar 

  8. Meitzler JL, Antony S, Wu Y et al (2014) NADPH oxidases: a perspective on reactive oxygen species production in tumor biology. Antioxid Redox Signal 20:2873–2889. doi:10.1089/ars.2013.5603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fransen M, Nordgren M, Wang B et al (2012) Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim Biophys Acta 1822:1363–1373. doi:10.1016/j.bbadis.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  10. Bonekamp NA, Völkl A, Fahimi HD et al (2009) Reactive oxygen species and peroxisomes: struggling for balance. Biofactors 35:346–355. doi:10.1002/biof.48

    Article  CAS  PubMed  Google Scholar 

  11. Antonenkov VD, Grunau S, Ohlmeier S et al (2010) Peroxisomes are oxidative organelles. Antioxid Redox Signal 13:525–537. doi: 10.1089/ars.2009.2996

  12. Lismont C, Nordgren M, Van Veldhoven PP et al (2015) Redox interplay between mitochondria and peroxisomes. Front Cell Dev Biol 3:35. doi:10.3389/fcell.2015.00035

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang J, Tripathi DN, Jing J et al (2015) ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat Cell Biol 17:1259–1269. doi:10.1038/ncb3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nordgren M, Fransen M (2014) Peroxisomal metabolism and oxidative stress. Biochimie 98:56–62. doi:10.1016/j.biochi.2013.07.026

    Article  CAS  PubMed  Google Scholar 

  15. Crane DI (2014) Revisiting the neuropathogenesis of Zellweger syndrome. Neurochem Int 69:1–8. doi:10.1016/j.neuint.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  16. Ivashchenko O, Van Veldhoven PP, Brees C et al (2011) Intraperoxisomal redox balance in mammalian cells: oxidative stress and interorganellar cross-talk. Mol Biol Cell 22:1440–1451. doi:10.1091/mbc.E10-11-0919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nordgren M, Wang B, Apanasets O et al (2012) Potential limitations in the use of KillerRed for fluorescence microscopy. J Microsc 245:229–235. doi:10.1111/j.1365-2818.2011.03564.x

    Article  CAS  PubMed  Google Scholar 

  18. Wang B, Van Veldhoven PP, Brees C et al (2013) Mitochondria are targets for peroxisome-derived oxidative stress in cultured mammalian cells. Free Radic Biol Med 65:882–894. doi:10.1016/j.freeradbiomed.2013.08.173

    Article  CAS  PubMed  Google Scholar 

  19. Walbrecq G, Wang B, Becker S et al (2015) Antioxidant cytoprotection by peroxisomal peroxiredoxin-5. Free Radic Biol Med 84:215–226. doi:10.1016/j.freeradbiomed.2015.02.032

    Article  CAS  PubMed  Google Scholar 

  20. Bulina ME, Chudakov DM, Britanova OV et al (2006) A genetically encoded photosensitizer. Nat Biotechnol 24:95–99. doi:10.1038/nbt1175

    Article  CAS  PubMed  Google Scholar 

  21. Raymond MA, Mollica L, Vigneault N et al (2003) Blockade of the apoptotic machinery by cyclosporine A redirects cell death toward necrosis in arterial endothelial cells: regulation by reactive oxygen species and cathepsin D. FASEB J 17:515–517. doi:10.1096/fj.02-0500fje

    CAS  PubMed  Google Scholar 

  22. Rizzuto R, Brini M, De Giorgi F et al (1996) Double labelling of subcellular structures with organelle-targeted GFP mutants in vivo. Curr Biol 6:183–188. doi:10.1016/S0960-9822(02)00451-7

    Article  CAS  PubMed  Google Scholar 

  23. Goldstein JC, Waterhouse NJ, Juin P et al (2000) The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol 2:156–162. doi:10.1038/35004029

    Article  CAS  PubMed  Google Scholar 

  24. Belloc F, Dumain P, Boisseau MR et al (1994) A flow cytometric method using Hoechst 33342 and propidium iodide for simultaneous cell cycle analysis and apoptosis determination in unfixed cells. Cytometry 17:59–65. doi:10.1002/cyto.990170108

    Article  CAS  PubMed  Google Scholar 

  25. Smith GS, Voyer-Grant JA, Harauz G (2012) Monitoring cleaved caspase-3 activity and apoptosis of immortalized oligodendroglial cells using live-cell imaging and cleaveable fluorogenic-dye substrates following potassium-induced membrane depolarization. J Vis Exp 13:e3422. doi:10.3791/3422

    Google Scholar 

  26. Drummen GP, van Liebergen LC, Op den Kamp JA et al (2002) C11-BODIPY(581/591), an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology. Free Radic Biol Med 33:473–490. doi:10.1016/S0891-5849(02)00848-1

    Article  CAS  PubMed  Google Scholar 

  27. Vandenabeele P, Vanden Berghe T, Festjens N (2006) Caspase inhibitors promote alternative cell death pathways. Sci STKE 2006(358):pe44. doi:10.1126/stke.3582006pe44

    Article  PubMed  Google Scholar 

  28. Christofferson DE, Yuan J (2010) Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol 22:263–268. doi:10.1016/j.ceb.2009.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Smeyne M, Smeyne RJ (2013) Glutathione metabolism and Parkinson's disease. Free Radic Biol Med 62:13–25. doi:10.1016/j.freeradbiomed.2013.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brees C, Fransen M (2014) A cost-effective approach to microporate mammalian cells with the neon transfection system. Anal Biochem 466:49–50. doi:10.1016/j.ab.2014.08.017

    Article  CAS  PubMed  Google Scholar 

  31. Fransen M (2014) HaloTag as a tool to investigate peroxisome dynamics in cultured mammalian cells. Methods Mol Biol 1174:157–170. doi:10.1007/978-1-4939-0944-5_10

    Article  CAS  PubMed  Google Scholar 

  32. Freitas MO, Francisco T, Rodrigues TA et al (2015) The peroxisomal protein import machinery displays a preference for monomeric substrates. Open Biol 5:e140236. doi:10.1098/rsob.140236

    Article  Google Scholar 

  33. Buytaert E, Dewaele M, Agostinis P (2007) Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta 1776:86–107. doi:10.1016/j.bbcan.2007.07.001

    CAS  PubMed  Google Scholar 

  34. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89:271–277. doi:10.1016/0022-1759(86)90368-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ms. C. Lismont (KU Leuven, Belgium) for critical reading of the manuscript. This work was supported by grants from the KU Leuven (OT/14/100) and the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen (Onderzoeksproject G095315N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Fransen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Fransen, M., Brees, C. (2017). KillerRed as a Tool to Study the Cellular Responses to Peroxisome-Derived Oxidative Stress. In: Schrader, M. (eds) Peroxisomes. Methods in Molecular Biology, vol 1595. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6937-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6937-1_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6935-7

  • Online ISBN: 978-1-4939-6937-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics