Skip to main content

Quantitative Monitoring of Subcellular Redox Dynamics in Living Mammalian Cells Using RoGFP2-Based Probes

  • Protocol
  • First Online:
Peroxisomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1595))

Abstract

To gain additional insight into how specific cell organelles may participate in redox signaling, it is essential to have access to tools and methodologies that are suitable to monitor spatiotemporal differences in the levels of different reactive oxygen species (ROS) and the oxidation state of specific redox couples. Over the years, the use of genetically encoded fluorescent redox indicators with a ratiometric readout has constantly gained in popularity because they can easily be targeted to various subcellular compartments and monitored in real time in single cells. Here we provide step-by-step protocols and tips for the successful use of roGFP2, a redox-sensitive variant of the enhanced green fluorescent protein, to monitor changes in glutathione redox balance and hydrogen peroxide homeostasis in the cytosol, peroxisomes, and mitochondria of mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forman HJ, Maiorino M, Ursini F (2010) Signaling functions of reactive oxygen species. Biochemistry 49:835–842. doi:10.1021/bi9020378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yan LJ (2014) Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J Diabetes Res 2014:137919. doi:10.1155/2014/137919

    PubMed  PubMed Central  Google Scholar 

  3. Lismont C, Nordgren M, Van Veldhoven PP et al (2015) Redox interplay between mitochondria and peroxisomes. Front Cell Dev Biol 3:35. doi:10.3389/fcell.2015.00035

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95. doi:10.1038/nrc2981

    Article  CAS  PubMed  Google Scholar 

  5. Gough DR, Cotter TG (2011) Hydrogen peroxide: a Jekyll and Hyde signalling molecule. Cell Death Dis 2:e213. doi:10.1038/cddis.2011.96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Holmström KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signaling. Nat Rev Mol Cell Biol 15:411–421. doi:10.1038/nrm3801

    Article  PubMed  Google Scholar 

  7. Ckless K (2014) Redox proteomics: from bench to bedside. Adv Exp Med Biol 806:301–317. doi:10.1007/978-3-319-06068-2_13

    Article  CAS  PubMed  Google Scholar 

  8. Spickett CM (2013) The lipid peroxidation product 4-hydroxy-2-nonenal: Advances in chemistry and analysis. Redox Biol 1:145–152. doi:10.1016/j.redox.2013.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cadet J, Delatour T, Douki T et al (1999) Hydroxyl radicals and DNA base damage. Mutat Res 424:9–21. doi:10.1016/S0027-5107(99)00004-4

    Article  CAS  PubMed  Google Scholar 

  10. Winterbourn CC (2014) The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochim Biophys Acta 1840:730–738. doi:10.1016/j.bbagen.2013.05.004

    Article  CAS  PubMed  Google Scholar 

  11. Karlsson M, Kurz T, Brunk UT et al (2010) What does the commonly used DCF test for oxidative stress really show? Biochem J 428:183–190. doi:10.1042/BJ20100208

    Article  CAS  PubMed  Google Scholar 

  12. Oku M, Sakai Y (2012) Assessment of physiological redox state with novel FRET protein probes. Antioxid Redox Signal 16:698–704. doi:10.1089/ars.2011.4251

    Article  CAS  PubMed  Google Scholar 

  13. Lukyanov KA, Belousov VV (2014) Genetically-encoded fluorescent redox sensors. Biochim Biophys Acta 1840:745–756. doi:10.1016/j.bbagen.2013.05.030

    Article  CAS  PubMed  Google Scholar 

  14. Hung YP, Albeck JG, Tantama M et al (2011) Imaging cytosolic NADH-NAD(+) redox state with a genetically-encoded fluorescent biosensor. Cell Metab 14:545–554. doi:10.1016/j.cmet.2011.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schwarzländer M, Dick TP, Meyer AJ et al (2015) Dissecting redox biology using fluorescent protein sensors. Antioxid Redox Signal 24(13):680–712. doi:10.1089/ars.2015.6266

    Article  PubMed  Google Scholar 

  16. Hanson GT, Aggeler R, Oglesbee D et al (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279:13044–13053. doi:10.1074/jbc.M312846200

    Article  CAS  PubMed  Google Scholar 

  17. Meyer AJ, Brach T, Marty L et al (2007) Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J 52:973–986. doi:10.1111/j.1365-313X.2007.03280.x

    Article  CAS  PubMed  Google Scholar 

  18. Dooley CT, Dore TM, Hanson GT et al (2004) Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J Biol Chem 279:22284–22293. doi:10.1074/jbc.M312847200

    Article  CAS  PubMed  Google Scholar 

  19. Aller I, Rouhier N, Meyer AJ (2013) Development of roGFP2-derived redox probes for measurement of the glutathione redox potential in the cytosol of severely glutathione-deficient rml1 seedlings. Front Plant Sci 4:506. doi:10.3389/fpls.2013.00506

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gutscher M, Pauleau AL, Marty L et al (2008) Real-time imaging of the intracellular glutathione redox potential. Nat Methods 5:553–559. doi:10.1038/nmeth.1212

    Article  CAS  PubMed  Google Scholar 

  21. Gutscher M, Sobotta MC, Wabnitz GH et al (2009) Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J Biol Chem 284:31532–31540. doi:10.1074/jbc.M109.059246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ivashchenko O, Van Veldhoven PP, Brees C et al (2011) Intraperoxisomal redox balance in mammalian cells: oxidative stress and interorganellar cross-talk. Mol Biol Cell 22:1440–1451. doi:10.1091/mbc.E10-11-0919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang B, Van Veldhoven PP, Brees C et al (2013) Mitochondria are targets for peroxisome-derived oxidative stress in cultured mammalian cells. Free Radic Biol Med 65:882–894. doi:10.1016/j.freeradbiomed.2013.08.173

    Article  CAS  PubMed  Google Scholar 

  24. Apanasets O, Grou CP, Van Veldhoven PP et al (2014) PEX5, the shuttling import receptor for peroxisomal matrix proteins, is a redox-sensitive protein. Traffic 15:94–103. doi:10.1111/tra.12129

    Article  CAS  PubMed  Google Scholar 

  25. Peeters A, Shinde AB, Dirkx R et al (2015) Mitochondria in peroxisome-deficient hepatocytes exhibit impaired respiration, depleted DNA, and PGC-1α independent proliferation. Biochim Biophys Acta 1853:285–298. doi:10.1016/j.bbamcr.2014.11.017

    Article  CAS  PubMed  Google Scholar 

  26. Walbrecq G, Wang B, Becker S et al (2015) Antioxidant cytoprotection by peroxisomal peroxiredoxin-5. Free Radic Biol Med 84:215–226. doi:10.1016/j.freeradbiomed.2015.02.032

    Article  CAS  PubMed  Google Scholar 

  27. Bailey LE, Ong SD (1978) Krebs-Henseleit solution as a physiological buffer in perfused and superfused preparations. J Pharmacol Methods 1:171–175

    Article  CAS  Google Scholar 

  28. Brees C, Fransen M (2014) A cost-effective approach to microporate mammalian cells with the Neon Transfection System. Anal Biochem 466:49–50. doi:10.1016/j.ab.2014.08.017

    Article  CAS  PubMed  Google Scholar 

  29. Fransen M (2014) HaloTag as a tool to investigate peroxisome dynamics in cultured mammalian cells. Methods Mol Biol 1174:157–170. doi:10.1007/978-1-4939-0944-5_10

    Article  CAS  PubMed  Google Scholar 

  30. Coyle B, Kinsella P, McCann M et al (2004) Induction of apoptosis in yeast and mammalian cells by exposure to 1,10-phenanthroline metal complexes. Toxicol In Vitro 18:63–70. doi:10.1016/j.tiv.2003.08.011

    Article  CAS  PubMed  Google Scholar 

  31. Jo DS, Bae DJ, Park SJ et al (2015) Pexophagy is induced by increasing peroxisomal reactive oxygen species in 1'10-phenanthroline-treated cells. Biochem Biophys Res Commun 467:354–360. doi:10.1016/j.bbrc.2015.09.153

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the KU Leuven (OT/14/100) and the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen (Onderzoeksproject G095315 N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Fransen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lismont, C., Walton, P.A., Fransen, M. (2017). Quantitative Monitoring of Subcellular Redox Dynamics in Living Mammalian Cells Using RoGFP2-Based Probes. In: Schrader, M. (eds) Peroxisomes. Methods in Molecular Biology, vol 1595. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6937-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6937-1_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6935-7

  • Online ISBN: 978-1-4939-6937-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics