Skip to main content

Protocols for Assessing Mitophagy in Neuronal Cell Lines and Primary Neurons

  • Protocol
  • First Online:
Techniques to Investigate Mitochondrial Function in Neurons

Part of the book series: Neuromethods ((NM,volume 123))

Abstract

Mitochondria are organelles that regulate essential eukaryotic functions including generating energy, sequestering excess calcium, and modulating cell survival. In order for neurons to thrive, mitochondria have to be continuously replenished by maintaining autophagic-lysosomal mediated degradation of mitochondria (mitophagy) and mitochondrial biogenesis. While a plethora of image- and biochemical-based techniques have been developed for measuring autophagy (macroautophagy) in eukaryotic cells, the molecular toolbox for quantifying and assessing mitophagy in neurons continues to evolve. Compared to proliferating cells, quantifying mitophagy in neurons poses a technical challenge given that mitochondria are predominantly present in neurites (axons and dendrites) and are highly dynamic.

In this chapter, we provide a brief overview on mitophagy and provide a list of validated fluorescence- and biochemistry-based techniques used for assessing mitophagy in neuronal cells and primary neurons. Secondly, we provide comprehensive guidelines for interpreting steady-state levels of mitophagy and mitophagic flux in neurons using modern fluorescence- and biochemistry-based techniques. Finally, we provide a comprehensive list of common pitfalls to avoid when assessing mitophagy and offer practical solutions to overcome technical issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pagliarini DJ, Dixon JE (2006) Mitochondrial modulation: reversible phosphorylation takes center stage? Trends Biochem Sci 31(1):26–34

    Article  CAS  PubMed  Google Scholar 

  2. Pekkurnaz G, Trinidad JC, Wang X, Kong D, Schwarz TL (2014) Glucose regulates mitochondrial motility via Milton modification by O-GlcNAc transferase. Cell 158(1):54–68. doi:10.1016/j.cell.2014.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gawlowski T, Suarez J, Scott B, Torres-Gonzalez M, Wang H, Schwappacher R, Han X, Yates JR III, Hoshijima M, Dillmann W (2012) Modulation of dynamin-related protein 1 (DRP1) function by increased O-linked-beta-N-acetylglucosamine modification (O-GlcNAc) in cardiac myocytes. J Biol Chem 287(35):30024–30034. doi:10.1074/jbc.M112.390682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12(2):119–131

    Article  CAS  PubMed  Google Scholar 

  5. Benischke AS, Hemion C, Flammer J, Neutzner A (2014) Proteasome-mediated quality control of S-nitrosylated mitochondrial proteins. Mitochondrion 17:182–186. doi:10.1016/j.mito.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  6. Taylor EB, Rutter J (2011) Mitochondrial quality control by the ubiquitin-proteasome system. Biochem Soc Trans 39(5):1509–1513. doi:10.1042/BST0391509

    Article  CAS  PubMed  Google Scholar 

  7. Hamon MP, Bulteau AL, Friguet B (2015) Mitochondrial proteases and protein quality control in ageing and longevity. Ageing Res Rev 23(Pt A):56–66. doi:10.1016/j.arr.2014.12.010

    Article  CAS  PubMed  Google Scholar 

  8. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science (New York, NY) 290(5497):1717–1721

    Article  CAS  Google Scholar 

  9. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4):463–477

    Article  CAS  PubMed  Google Scholar 

  10. Cook KL, Soto-Pantoja DR, Abu-Asab M, Clarke PA, Roberts DD, Clarke R (2014) Mitochondria directly donate their membrane to form autophagosomes during a novel mechanism of parkin-associated mitophagy. Cell Biosci 4(1):16. doi:10.1186/2045-3701-4-16

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A (2010) Electron tomography reveals the endoplasmic reticulum as a membrane source for autophagosome formation. Autophagy 6(2):301–303

    Article  CAS  PubMed  Google Scholar 

  12. Geng J, Klionsky DJ (2008) The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep 9(9):859–864. doi:10.1038/embor.2008.163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cherra SJ, Chu CT (2008) Autophagy in neuroprotection and neurodegeneration: A question of balance. Fut Neurol 3(3):309–323

    Google Scholar 

  14. Cuervo AM (2004) Autophagy: in sickness and in health. Trends Cell Biol 14(2):70–77

    Article  PubMed  Google Scholar 

  15. Komatsu M, Wang QJ, Holstein GR, Friedrich VL Jr, Iwata J, Kominami E, Chait BT, Tanaka K, Yue Z (2007) Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci U S A 104(36):14489–14494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nishiyama J, Miura E, Mizushima N, Watanabe M, Yuzaki M (2007) Aberrant membranes and double-membrane structures accumulate in the axons of Atg5-null Purkinje cells before neuronal death. Autophagy 3(6):591–596

    Article  CAS  PubMed  Google Scholar 

  17. Plowey ED, Cherra SJ III, Liu YJ, Chu CT (2008) Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J Neurochem 105(3):1048–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171(4):603–614

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64(2):113–122

    Article  PubMed  Google Scholar 

  20. Zhang Y, Murshid A, Prince T, Calderwood SK (2011) Protein kinase A regulates molecular chaperone transcription and protein aggregation. PLoS One 6(12):e28950. doi:10.1371/journal.pone.0028950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ravikumar B, Duden R, Rubinsztein DC (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11(9):1107–1117

    Article  CAS  PubMed  Google Scholar 

  22. Yu WH, Kumar A, Peterhoff C, Shapiro Kulnane L, Uchiyama Y, Lamb BT, Cuervo AM, Nixon RA (2004) Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for beta-amyloid peptide over-production and localization in Alzheimer's disease. Int J Biochem Cell Biol 36(12):2531–2540

    Article  CAS  PubMed  Google Scholar 

  23. Jeffrey M, Scott JR, Williams A, Fraser H (1992) Ultrastructural features of spongiform encephalopathy transmitted to mice from three species of bovidae. Acta Neuropathol (Berl) 84(5):559–569

    Article  CAS  Google Scholar 

  24. Zhu J, Wang KZ, Chu CT (2013) After the banquet: Mitochondrial biogenesis, mitophagy and cell survival. Autophagy 9(11)

    Google Scholar 

  25. Kanki T, Klionsky DJ (2009) Atg32 is a tag for mitochondria degradation in yeast. Autophagy 5(8):1201–1202

    Article  PubMed  Google Scholar 

  26. Tal R, Winter G, Ecker N, Klionsky DJ, Abeliovich H (2007) Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival. J Biol Chem 282(8):5617–5624

    Article  CAS  PubMed  Google Scholar 

  27. Dagda RK, Das Banerjee T, Janda E (2013) How Parkinsonian toxins dysregulate the autophagy machinery. Int J Mol Sci 14(11):22163–22189. doi:10.3390/ijms141122163

    Article  PubMed  PubMed Central  Google Scholar 

  28. Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev 12(1):9–14

    Article  CAS  Google Scholar 

  29. Lemasters JJ (2005) Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8(1):3–5

    Article  CAS  PubMed  Google Scholar 

  30. Chu CT, Ji J, Dagda RK, Jiang JF, Tyurina YY, Kapralov AA, Tyurin VA, Yanamala N, Shrivastava IH, Mohammadyani D, Qiang Wang KZ, Zhu J, Klein-Seetharaman J, Balasubramanian K, Amoscato AA, Borisenko G, Huang Z, Gusdon AM, Cheikhi A, Steer EK, Wang R, Baty C, Watkins S, Bahar I, Bayir H, Kagan VE (2013) Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat Cell Biol. doi:10.1038/ncb2837

    PubMed Central  Google Scholar 

  31. Dagda RK, Zhu J, Kulich SM, Chu CT (2008) Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson's disease. Autophagy 4(6):770–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12(2):119–131. doi:10.1038/ncb2012

    Article  CAS  PubMed  Google Scholar 

  33. Gusdon AM, Chu CT (2011) To eat or not to eat: neuronal metabolism, mitophagy, and Parkinson's disease. Antioxid Redox Signal 14(10):1979–1987. doi:10.1089/ars.2010.3763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Whitworth AJ, Pallanck LJ (2009) The PINK1/Parkin pathway: a mitochondrial quality control system? J Bioenerg Biomembr 41(6):499–503

    Article  CAS  PubMed  Google Scholar 

  35. Zhu J, Horbinski C, Guo F, Watkins S, Uchiyama Y, Chu CT (2006) Regulation of autophagy by extracellular signal regulated protein kinases during 1-methyl-4-phenylpyridinium induced cell death. Am J Pathol 170(1):75–86

    Article  Google Scholar 

  36. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, Adeli K, Adhihetty PJ, Adler SG, Agam G, Agarwal R, Aghi MK et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edn). Autophagy 12(1):1–222. doi:10.1080/15548627.2015.1100356

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19(21):5720–5728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kimura S, Noda T, Yoshimori T (2007) Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3(5):452–460

    Article  CAS  PubMed  Google Scholar 

  39. Dagda RK, Pien I, Wang R, Zhu J, Wang KZ, Callio J, Banerjee TD, Dagda RY, Chu CT (2014) Beyond the mitochondrion: cytosolic PINK1 remodels dendrites through protein kinase A. J Neurochem 128(6):864–877. doi:10.1111/jnc.12494

    Article  CAS  PubMed  Google Scholar 

  40. Yamamoto A, Tagawa Y, Yoshimori T, Moriyama Y, Masaki R, Tashiro Y (1998) Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct 23(1):33–42

    Article  CAS  PubMed  Google Scholar 

  41. Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1(5):2406–2415. doi:10.1038/nprot.2006.356

    Article  CAS  PubMed  Google Scholar 

  42. Kim I, Lemasters JJ (2011) Mitochondrial degradation by autophagy (mitophagy) in GFP-LC3 transgenic hepatocytes during nutrient deprivation. Am J Physiol Cell Physiol 300(2):C308–C317. doi:10.1152/ajpcell.00056.2010

    Article  CAS  PubMed  Google Scholar 

  43. Zhu J, Dagda RK, Chu CT (2011) Monitoring mitophagy in neuronal cell cultures. Methods Mol Biol 793:325–339. doi:10.1007/978-1-61779-328-8_21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schwarz TL (2013) Mitochondrial trafficking in neurons. Cold Spring Harb Perspect Biol 5(6). doi:10.1101/cshperspect.a011304

  45. Dagda RK, Zaucha JA, Wadzinski BE, Strack S (2003) A developmentally regulated, neuron-specific splice variant of the variable subunit Bbeta targets protein phosphatase 2A to mitochondria and modulates apoptosis. J Biol Chem 278(27):24976–24985

    Article  CAS  PubMed  Google Scholar 

  46. Dagda RK, Merrill RA, Cribbs JT, Chen Y, Hell JW, Usachev YM, Strack S (2008) The spinocerebellar ataxia 12 gene product and protein phosphatase 2A regulatory subunit Bbeta 2 antagonizes neuronal survival by promoting mitochondrial fission. J Biol Chem 283:36241–36248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rodriguez-Enriquez S, Kim I, Currin RT, Lemasters JJ (2006) Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes. Autophagy 2(1):39–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dickey AS, Strack S (2011) PKA/AKAP1 and PP2A/Bbeta2 regulate neuronal morphogenesis via Drp1 phosphorylation and mitochondrial bioenergetics. J Neurosci 31(44):15716–15726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li Z, Okamoto K, Hayashi Y, Sheng M (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119(6):873–887

    Article  CAS  PubMed  Google Scholar 

  50. Verstreken P, Ly CV, Venken KJ, Koh TW, Zhou Y, Bellen HJ (2005) Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47(3):365–378

    Article  CAS  PubMed  Google Scholar 

  51. Chu CT, Plowey ED, Dagda RK, Hickey RW, Cherra SJ III, Clark RS (2009) Autophagy in neurite injury and neurodegeneration: in vitro and in vivo models. Methods Enzymol 453:217–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cherra SJ III, Steer E, Gusdon AM, Kiselyov K, Chu CT (2013) Mutant LRRK2 elicits calcium imbalance and depletion of dendritic mitochondria in neurons. Am J Pathol 182(2):474–484. doi:10.1016/j.ajpath.2012.10.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kuma A, Matsui M, Mizushima N (2007) LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization. Autophagy 3(4):323–328

    Article  CAS  PubMed  Google Scholar 

  54. Ashrafi G, Schlehe JS, LaVoie MJ, Schwarz TL (2014) Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J Cell Biol 206(5):655–670. doi:10.1083/jcb.201401070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rantanen A, Jansson M, Oldfors A, Larsson NG (2001) Downregulation of Tfam and mtDNA copy number during mammalian spermatogenesis. Mamm Genome 12(10):787–792

    Article  CAS  PubMed  Google Scholar 

  56. Wang KZ, Zhu J, Dagda RK, Uechi G, Cherra SJ III, Gusdon AM, Balasubramani M, Chu CT (2014) ERK-mediated phosphorylation of TFAM downregulates mitochondrial transcription: implications for Parkinson's disease. Mitochondrion 17:132–140. doi:10.1016/j.mito.2014.04.008

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The method development and the research data presented in this book chapter were supported by an NIH-NIGMS grant (GM103554) and by a University of Pittsburgh Pathology Post-doctoral Research Training Program Grant awarded to R.K.D. We give special thanks to Dr. Stefan Strack (Department of Pharmacology, University of Iowa College of Medicine) for graciously providing the mito-GFP and Flag-tagged Bβ2 constructs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben K. Dagda Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Dagda, R.K., Rice, M. (2017). Protocols for Assessing Mitophagy in Neuronal Cell Lines and Primary Neurons. In: Strack, S., Usachev, Y. (eds) Techniques to Investigate Mitochondrial Function in Neurons. Neuromethods, vol 123. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6890-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6890-9_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6888-6

  • Online ISBN: 978-1-4939-6890-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics