Skip to main content

Measuring Callose Deposition, an Indicator of Cell Wall Reinforcement, During Bacterial Infection in Arabidopsis

  • Protocol
  • First Online:
Plant Pattern Recognition Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1578))

Abstract

The plant cell wall responds dynamically during interaction with various pathogens. Upon recognition of “nonself” components, plant cells deploy a variety of immune responses including cell wall fortification. Callose, a β-(1, 3)-d-glucan polymer, is a component of the material deposited at the site of infection between the plasma membrane and the preexisting cell wall that is hypothesized to serve as a physical barrier and platform for directed antimicrobial compound deposition. The defense-associated function of callose deposition is supported by its induction during pathogen-associated molecular patterns (PAMP)-triggered immunity (PTI) and its inhibition by defense suppressing virulence effectors. Thus, callose deposition is a commonly monitored read-out in plant defense. This protocol describes the use of aniline blue staining and fluorescent microscopy to measure callose deposition in bacteria-infected or elicitor-challenged Arabidopsis leaf tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ellinger D, Voigt CA (2014) Callose biosynthesis in Arabidopsis with a focus on pathogen response: what we have learned within the last decade. Ann Bot 114(6):1349–1358

    Article  PubMed  PubMed Central  Google Scholar 

  2. Underwood W (2012) The plant cell wall: a dynamic barrier against pathogen invasion. Front Plant Sci 3:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eggert D, Naumann M, Reimer R, Voigt CA (2014) Nanoscale glucan polymer network causes pathogen resistance. Sci Rep 4:4159

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ellinger D, Naumann M, Falter C, Zwikowics C, Jamrow T, Manisseri C, Somerville SC, Voigt CA (2013) Elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis. Plant Physiol 161(3):1433–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jacobs AK, Lipka V, Burton RA, Panstruga R, Strizhov N, Schulze-Lefert P, Fincher GB (2003) An arabidopsis callose synthase, GSL5, Is required for wound and papillary callose formation. Plant Cell 15(11):2503–2513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nishimura MT, Stein M, Hou BH, Vogel JP, Edwards H, Somerville SC (2003) Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science 301(5635):969–972

    Article  CAS  PubMed  Google Scholar 

  7. Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J (2011) Callose deposition: a multifaceted plant defense response. Mol Plant Microbe Interact 24(2):183–193

    Article  CAS  PubMed  Google Scholar 

  8. Geng X, Cheng J, Gangadharan A, Mackey D (2012) The coronatine toxin of Pseudomonas syringae is a multifunctional suppressor of Arabidopsis defense. Plant Cell 24(11):4763–4774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. DebRoy S, Thilmony R, Kwack YB, Nomura K, He SY (2004) A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc Natl Acad Sci USA 101(26):9927–9932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ham JH, Majerczak D, Ewert S, Sreerekha MV, Mackey D, Coplin D (2008) WtsE, an AvrE-family type III effector protein of Pantoea stewartii subsp. stewartii, causes cell death in non-host plants. Mol Plant Pathol 9(5):633–643

    Article  CAS  PubMed  Google Scholar 

  11. Fabro G, Steinbrenner J, Coates M, Ishaque N, Baxter L, Studholme DJ, Korner E, Allen RL, Piquerez SJ, Rougon-Cardoso A, Greenshields D, Lei R, Badel JL, Caillaud MC, Sohn KH, Van den Ackerveken G, Parker JE, Beynon J, Jones JD (2011) Multiple candidate effectors from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity. PLoS Pathog 7(11):e1002348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guo M, Tian F, Wamboldt Y, Alfano JR (2009) The majority of the type III effector inventory of Pseudomonas syrinage pv. tomato DC3000 can suppress plant immunity. Mol Plant Microbe Interact 22(9):1069–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Currier HB (1957) Callose substance in plant cells. Am J Bot 44(6):478–488

    Article  Google Scholar 

  14. Smith MM, McCully ME (1978) A critical evaluation of the specificity of aniline blue induced fluorescence. Protoplasma 95(3):229–254

    Article  CAS  Google Scholar 

  15. Wood PJ, Fulcher RG (1983) Dye interactions. A basis for specific detection and histochemistry of polysaccharides. J Histochem Cytochem 31(6):823–826

    Article  CAS  PubMed  Google Scholar 

  16. Stone BA, Evans NA, Bonig I, Clarke AE (1984) The application of Sirofluor, a chemically defined fluorochrome from aniline blue for the histochemical detection of callose. Protoplasma 122(3):191–195

    Article  CAS  Google Scholar 

  17. Ham JH, Kim MG, Lee SY, Mackey D (2007) Layered basal defenses underlie non-host resistance of Arabidopsis to Pseudomonas syringae pv. phaseolicola. Plant J 51(4):604–616

    Article  CAS  PubMed  Google Scholar 

  18. Zhou J, Spallek T, Faulkner C, Robatzek S (2012) CalloseMeasurer: a novel software solution to measure callose deposition and recognise spreading callose patterns. Plant Methods 8(1):49

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cumbie JS, Pankow RC, Thomas WJ, JH, C (2010) AutoSPOTs: automated image analysis for enumerating callose deposition. In: Akimitsu K et al. (eds) 10th Japan-US Seminar: genome-enabled integration of research in plant pathogen systems, 2010. APS press: St Paul, MN

    Google Scholar 

  20. Kim MG, da Cunha L, McFall AJ, Belkhadir Y, DebRoy S, Dangl JL, Mackey D (2005) Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell 121(5):749–759

    Article  CAS  PubMed  Google Scholar 

  21. Daudi A, Cheng Z, O'Brien JA, Mammarella N, Khan S, Ausubel FM, Bolwell GP (2012) The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell 24(1):275–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim MG, Mackey D (2008) Measuring cell-wall-based defenses and their effect on bacterial growth in Arabidopsis. Methods Mol Biol 415:443–452

    CAS  PubMed  Google Scholar 

  23. Yuan J, He YH (1996) The Pseudomonas syringae Hrp regulation and secretion system controls the production and secretion of multiple extracellular proteins. J Bacteriol 178:6399–6402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This protocol is adapted from Kim and Mackey, 2008, MiMB [22]. Funding for this work was provided by the US Department of Agriculture (National Institute of Food and Agriculture, grant #2015-11870612), the Korean Rural Development Administration Next-Generation BioGreen Program (System and Synthetic Agro-Biotech Center and grant nos. PJ009088 and PJ011091), and the Ohio Agricultural Research and Development Center of the Ohio State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Mackey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Jin, L., Mackey, D.M. (2017). Measuring Callose Deposition, an Indicator of Cell Wall Reinforcement, During Bacterial Infection in Arabidopsis. In: Shan, L., He, P. (eds) Plant Pattern Recognition Receptors. Methods in Molecular Biology, vol 1578. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6859-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6859-6_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6858-9

  • Online ISBN: 978-1-4939-6859-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics