Skip to main content

Circular Dichroism and Fluorescence Spectroscopy to Study Protein Structure and Protein–Protein Interactions in Ethylene Signaling

  • Protocol
  • First Online:
Ethylene Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1573))

Abstract

Circular dichroism (CD) spectroscopy is an invaluable technique to analyze secondary structure and functional folding of recombinant purified proteins. CD spectroscopy can also be applied to detect changes in protein secondary structure related to the pH or redox conditions found in different cellular compartments or to the interaction with other molecules. Another biophysical technique to monitor conformational changes and interaction with small molecule ligands or biological macromolecules is protein fluorescence spectroscopy making use of the aromatic amino acid tryptophan as a sensitive intrinsic fluorescent probe. Here, we describe the application of CD and tryptophan fluorescence spectroscopy to study soluble and membrane proteins of the ethylene signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deleage G, Geourjon C (1993) An interactive graphic program for calculating the secondary structure content of proteins from circular dichroism spectrum. Comput Appl Biosci 9(2):197–199

    CAS  PubMed  Google Scholar 

  2. Perez-Iratxeta C, Andrade-Navarro MA (2008) K2D2: estimation of protein secondary structure from circular dichroism spectra. BMC Struct Biol 8:25

    Article  PubMed  PubMed Central  Google Scholar 

  3. Provencher SW, Glockner J (1981) Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20(1):33–37

    Article  CAS  PubMed  Google Scholar 

  4. Sreerama N, Woody RW (1994) Poly(pro)II helices in globular proteins: identification and circular dichroic analysis. Biochemistry 33(33):10022–10025

    Article  CAS  PubMed  Google Scholar 

  5. Sreerama N, Woody RW (1994) Protein secondary structure from circular dichroism spectroscopy. Combining variable selection principle and cluster analysis with neural network, ridge regression and self-consistent methods. J Mol Biol 242(4):497–507

    CAS  PubMed  Google Scholar 

  6. Whitmore L, Wallace BA (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32(Web Server issue):W668–W673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89(5):392–400

    Article  CAS  PubMed  Google Scholar 

  8. Smith L, Greenfield NJ, Hitchcock-DeGregori SE (1994) The effects of deletion of the amino-terminal helix on troponin C function and stability. J Biol Chem 269(13):9857–9863

    CAS  PubMed  Google Scholar 

  9. Settimo L, Donnini S, Juffer AH, Woody RW, Marin O (2007) Conformational changes upon calcium binding and phosphorylation in a synthetic fragment of calmodulin. Biopolymers 88(3):373–385

    Article  CAS  PubMed  Google Scholar 

  10. Abel K, Yoder MD, Hilgenfeld R, Jurnak F (1996) An alpha to beta conformational switch in EF-Tu. Structure 4(10):1153–1159

    Article  CAS  PubMed  Google Scholar 

  11. Gast RE, Konig S, Rose K, Ferenz KB, Krieglstein J (2011) Binding of ATP to vascular endothelial growth factor isoform VEGF-A165 is essential for inducing proliferation of human umbilical vein endothelial cells. BMC Biochem 12:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bisson MM, Bleckmann A, Allekotte S, Groth G (2009) EIN2, the central regulator of ethylene signalling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1. Biochem J 424(1):1–6

    Article  CAS  PubMed  Google Scholar 

  13. Classen E, Groth G (2012) Cloning, expression and purification of orthologous membrane proteins: a general protocol for preparation of the histidine sensor kinase ETR1 from different species. Mol Membr Biol 29(2):26–35

    Article  CAS  PubMed  Google Scholar 

  14. Voet-van-Vormizeele J, Groth G (2008) Ethylene controls autophosphorylation of the histidine kinase domain in ethylene receptor ETR1. Mol Plant 1(2):380–387

    Article  CAS  PubMed  Google Scholar 

  15. Voet-van-Vormizeele J, Groth G (2003) High-level expression of the Arabidopsis thaliana ethylene receptor protein ETR1 in Escherichia coli and purification of the recombinant protein. Protein Expr Purif 32(1):89–94

    Article  CAS  PubMed  Google Scholar 

  16. Hospes M, Hendriks J, Hellingwerf KJ (2013) Tryptophan fluorescence as a reporter for structural changes in photoactive yellow protein elicited by photo-activation. Photochem Photobiol Sci 12(3):479–488

    Article  CAS  PubMed  Google Scholar 

  17. Moon CP, Fleming KG (2011) Using tryptophan fluorescence to measure the stability of membrane proteins folded in liposomes. Methods Enzymol 492:189–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Park SH, Shastry MC, Roder H (1999) Folding dynamics of the B1 domain of protein G explored by ultrarapid mixing. Nat Struct Biol 6(10):943–947

    Article  CAS  PubMed  Google Scholar 

  19. Pollard TD (2010) A guide to simple and informative binding assays. Mol Biol Cell 21(23):4061–4067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bisson MM, Groth G (2010) New insight in ethylene signaling: autokinase activity of ETR1 modulates the interaction of receptors and EIN2. Mol Plant 3(5):882–889

    Article  CAS  PubMed  Google Scholar 

  21. Bisson MM, Groth G (2012) Cyanide is an adequate agonist of the plant hormone ethylene for studying signalling of sensor kinase ETR1 at the molecular level. Biochem J 444(2):261–267

    Article  CAS  PubMed  Google Scholar 

  22. Bisson MM, Groth G (2015) Targeting plant ethylene responses by controlling essential protein–protein interactions in the ethylene pathway. Mol Plant 8(8):1165–1174

    Article  CAS  PubMed  Google Scholar 

  23. Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta Proteins Proteomics 1751(2):119–139

    Article  CAS  Google Scholar 

  24. Sreerama N, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287(2):252–260

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Silke Allekotte, Dr. Melanie Bisson-Ritter, and Dr. Elisa Classen for CD and fluorescence measurements on purified ETR1 and EIN2. The critical reading of the manuscript by Dr. Melanie Bisson-Ritter and Lena Müller is also greatly acknowledged. Support for work in the authors’ laboratory from grants from the Deutsche Forschungsgemeinschaft (GR1616-7, CRC590, GR1616-9, GR1616-10) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Groth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kessenbrock, M., Groth, G. (2017). Circular Dichroism and Fluorescence Spectroscopy to Study Protein Structure and Protein–Protein Interactions in Ethylene Signaling. In: Binder, B., Eric Schaller, G. (eds) Ethylene Signaling. Methods in Molecular Biology, vol 1573. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6854-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6854-1_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6852-7

  • Online ISBN: 978-1-4939-6854-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics