Skip to main content

Identifying Loop-Mediated Protein–Protein Interactions Using LoopFinder

  • Protocol
  • First Online:
Modeling Peptide-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1561))

Abstract

Peptides are an increasingly useful class of molecules, finding unique applications as chemical probes and potential drugs. They are particularly adept at inhibiting protein–protein interactions, which are often difficult to target using small molecules. The identification and rational design of protein-binding epitopes remains a bottleneck in the development of bioactive peptides. One fruitful strategy has been using structured scaffolds to present essential hot spot residues involved in protein–protein recognition, and this process has been greatly advanced by computational tools that can identify hot spot residues. Here we discuss LoopFinder, a program that uses structures from the Protein Data Bank to comprehensively search for protein–protein interactions that are mediated by nonhelical, nonsheet loop structures. We developed LoopFinder to identify these “hot loops” and to assist in the design of cyclic peptides that mimic these important structures. In this article, we provide all key files, outline step-by-step methods for users to conduct independent LoopFinder searches, and provide guidance on additional potential applications for the LoopFinder program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450(7172):1001–1009

    Article  CAS  PubMed  Google Scholar 

  2. Smith MC, Gestwicki JE (2012) Features of protein-protein interactions that translate into potent inhibitors: topology, surface area and affinity. Expert Rev Mol Med 14

    Google Scholar 

  3. Arkin MR, Tang YY, Wells JA (2014) Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem Biol 21(9):1102–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20(1):122–128

    Article  CAS  PubMed  Google Scholar 

  5. Craik DJ, Fairlie DP, Liras S, Price D (2013) The future of peptide-based drugs. Chem Biol Drug Des 81(1):136–147

    Article  CAS  PubMed  Google Scholar 

  6. Clackson T, Wells JA (1995) A hot-spot of binding-energy in a hormone-receptor interface. Science 267(5196):383–386

    Article  CAS  PubMed  Google Scholar 

  7. Cunningham BC, Wells JA (1993) Comparison of a structural and a functional epitope. J Mol Biol 234:554–563

    Article  CAS  PubMed  Google Scholar 

  8. Schymkowitz J et al (2005) The FoldX web server: an online force field. Nucleic Acids Res 33:W382–W388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kortemme T, Baker D (2002) A simple physical model for binding energy hot spots in protein-protein complexes. Proc Natl Acad Sci U S A 99(22):14116–14121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kortemme T, Kim D, Baker D (2004) Computational alanine scanning of protein-protein interfaces. Sci STKE 2004:pl2

    PubMed  Google Scholar 

  11. Rajamani D, Thiel S, Vajda S, Camacho CJ (2004) Anchor residues in protein–protein interactions. Proc Natl Acad Sci U S A 101:11287–11292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Koes DR, Camacho CJ (2012) PocketQuery: protein–protein interaction inhibitor starting points from protein–protein interaction structure. Nucleic Acids Res 40:W387–W392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gao Y, Wang RX, Lai LH (2004) Structure-based method for analyzing protein-protein interfaces. J Mol Model 10(1):44–54

    Article  CAS  PubMed  Google Scholar 

  14. Brenke R et al (2009) Fragment-based identification of druggable ‘hot spots’ of proteins using Fourier domain correlation techniques. Bioinformatics 25(5):621–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. London N, Raveh B, Movshovitz-Attias D, Schueler-Furman O (2010) Can self-inhibitory peptides be derived from the interfaces of globular protein–protein interactions? Proteins 78:3140–3149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gao M et al (2014) Rationally designed macrocyclic peptides as synergistic agonists of LPS-induced inflammatory response. Tetrahedron 70:7664–7668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jochim AL, Arora PS (2010) Systematic analysis of helical protein interfaces reveals targets for synthetic inhibitors. ACS Chem Biol 5(10):919–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bullock BN, Jochim AL, Arora PS (2011) Assessing helical protein interfaces for inhibitor design. J Am Chem Soc 133(36):14220–14223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Patgiri A, Jochim AL, Arora PS (2008) A hydrogen bond surrogate approach for stabilization of short peptide sequences in alpha-helical conformation. Acc Chem Res 41(10):1289–1300

    Article  CAS  PubMed  Google Scholar 

  20. Azzarito V, Long K, Murphy NS, Wilson AJ (2013) Inhibition of alpha-helix-mediated protein-protein interactions using designed molecules. Nat Chem 5(3):161–173

    Article  CAS  PubMed  Google Scholar 

  21. Watkins AM, Arora PS (2014) Anatomy of beta-strands at protein-protein interfaces. ACS Chem Biol 9(8):1747–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jayatunga MKP, Thompson S, Hamilton AD (2014) alpha-Helix mimetics: outwards and upwards. Bioorg Med Chem Lett 24(3):717–724

    Article  CAS  PubMed  Google Scholar 

  23. Loughlin WA, Tyndall JDA, Glenn MP, Fairlie DP (2004) Beta-strand mimetics. Chem Rev 104(12):6085–6117

    Article  CAS  PubMed  Google Scholar 

  24. Pelay-Gimeno M, Glas A, Koch O, Grossmann TN (2015) Structure-based design of inhibitors of protein-protein interactions: mimicking peptide binding epitopes. Angew Chem Int Ed 54(31):8896–8927

    Article  CAS  Google Scholar 

  25. Wieland T, Faulstich H (1991) 50 Years of amanitin. Experientia 47(11–12):1186–1193

    Article  CAS  PubMed  Google Scholar 

  26. Schreiber SL, Crabtree GR (1992) The mechanism of action of cyclosporine-a and Fk506. Immunol Today 13(4):136–142

    Article  CAS  PubMed  Google Scholar 

  27. Bockus AT, McEwen CM, Lokey RS (2013) Form and function in cyclic peptide natural products: a pharmacokinetic perspective. Curr Top Med Chem 13(7):821–836

    Article  CAS  PubMed  Google Scholar 

  28. Bock JE, Gavenonis J, Kritzer JA (2013) Getting in shape: controlling peptide bioactivity and bioavailability using conformational constraints. ACS Chem Biol 8(3):488–499

    Article  CAS  PubMed  Google Scholar 

  29. Guharoy M, Chakrabarti P (2007) Secondary structure based analysis and classification of biological interfaces: identification of binding motifs in protein–protein interactions. Bioinformatics 23(15):1909–1918

    Article  CAS  PubMed  Google Scholar 

  30. Gavenonis J, Sheneman BA, Siegert TR, Eshelman MR, Kritzer JA (2014) Comprehensive analysis of loops at protein-protein interfaces for macrocycle design. Nat Chem Biol 10(9):716–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chaudhury S, Lyskov S, Gray JJ (2010) PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 26(5):689–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shulman-Peleg A, Shatsky M, Nussinov R, Wolfson HJ (2007) Spatial chemical conservation of hot spot interactions in protein-protein complexes. BMC Biol 5

    Google Scholar 

  33. Berman HM et al (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lo SC, Li XC, Henzl MT, Beamer LJ, Hannink M (2006) Structure of the Keap1: Nrf2 interface provides mechanistic insight into Nrf2 signaling. EMBO J 25(15):3605–3617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schilling J, Schoppe J, Pluckthun A (2014) From DARPins to LoopDARPins: novel LoopDARPin design allows the selection of low picomolar binders in a single round of ribosome display. J Mol Biol 426(3):691–721

    Article  CAS  PubMed  Google Scholar 

  36. North B, Lehmann A, Dunbrack RL (2011) A new clustering of antibody CDR loop conformations. J Mol Biol 406(2):228–256

    Article  CAS  PubMed  Google Scholar 

  37. Javadi Y, Itzhaki LS (2013) Tandem-repeat proteins: regularity plus modularity equals design-ability. Curr Opin Struct Biol 23(4):622–631

    Article  CAS  PubMed  Google Scholar 

  38. Yu Y, Lutz S (2011) Circular permutation: a different way to engineer enzyme structure and function. Trends Biotechnol 29(1):18–25

    Article  CAS  PubMed  Google Scholar 

  39. Brunette TJ et al (2015) Exploring the repeat protein universe through computational protein design. Nature 528(7583):580–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Villar EA et al (2014) How proteins bind macrocycles. Nat Chem Biol 10(9):723–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hopkins AL, Groom CR, Alex A (2004) Ligand efficiency: a useful metric for lead selection. Drug Discov Today 9(10):430–431

    Article  PubMed  Google Scholar 

  42. Lavi A et al (2013) Detection of peptide-binding sites on protein surfaces: the first step toward the modeling and targeting of peptide-mediated interactions. Proteins 81:2096–2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bergey CM, Watkins AM, Arora PS (2013) HippDB: a database of readily targeted helical protein-protein interactions. Bioinformatics 29(21):2806–2807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. White CJ, Yudin AK (2011) Contemporary strategies for peptide macrocyclization. Nat Chem 3(7):509–524

    Article  CAS  PubMed  Google Scholar 

  45. Timmerman P, Beld J, Puijk WC, Meloen RH (2005) Rapid and quantitative cyclization of multiple peptide loops onto synthetic scaffolds for structural mimicry of protein surfaces. Chembiochem 6:821–824

    Article  CAS  PubMed  Google Scholar 

  46. Walensky LD, Bird GH (2014) Hydrocarbon-stapled peptides: principles, practice, and progress. J Med Chem 57(15):6275–6288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gould A, Ji YB, Aboye TL, Camarero JA (2011) Cyclotides, a novel ultrastable polypeptide scaffold for drug discovery. Curr Pharm Des 17(38):4294–4307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua A. Kritzer .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Siegert, T.R., Bird, M., Kritzer, J.A. (2017). Identifying Loop-Mediated Protein–Protein Interactions Using LoopFinder. In: Schueler-Furman, O., London, N. (eds) Modeling Peptide-Protein Interactions. Methods in Molecular Biology, vol 1561. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6798-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6798-8_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6796-4

  • Online ISBN: 978-1-4939-6798-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics