Skip to main content

Flexible Backbone Methods for Predicting and Designing Peptide Specificity

  • Protocol
  • First Online:
Modeling Peptide-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1561))

Abstract

Protein–protein interactions play critical roles in essentially every cellular process. These interactions are often mediated by protein interaction domains that enable proteins to recognize their interaction partners, often by binding to short peptide motifs. For example, PDZ domains, which are among the most common protein interaction domains in the human proteome, recognize specific linear peptide sequences that are often at the C-terminus of other proteins. Determining the set of peptide sequences that a protein interaction domain binds, or it’s “peptide specificity,” is crucial for understanding its cellular function, and predicting how mutations impact peptide specificity is important for elucidating the mechanisms underlying human diseases. Moreover, engineering novel cellular functions for synthetic biology applications, such as the biosynthesis of biofuels or drugs, requires the design of protein interaction specificity to avoid crosstalk with native metabolic and signaling pathways. The ability to accurately predict and design protein–peptide interaction specificity is therefore critical for understanding and engineering biological function. One approach that has recently been employed toward accomplishing this goal is computational protein design. This chapter provides an overview of recent methodological advances in computational protein design and highlights examples of how these advances can enable increased accuracy in predicting and designing peptide specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Röthlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J et al (2008) Kemp elimination catalysts by computational enzyme design. Nature 453:190–195. doi:10.1038/nature06879

    Article  PubMed  Google Scholar 

  2. Jiang L, Althoff EA, Clemente FR, Doyle L, Röthlisberger D et al (2008) De novo computational design of retro-aldol enzymes. Science 319:1387–1391. doi:10.1126/science.1152692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fleishman SJ, Whitehead TA, Ekiert DC, Dreyfus C, Corn JE et al (2011) Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. Science 332:816–821. doi:10.1126/science.1202617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dahiyat BI (1997) De novo protein design: fully automated sequence selection. Science 278:82–87. doi:10.1126/science.278.5335.82

    Article  CAS  PubMed  Google Scholar 

  5. Ponder JW, Richards FM (1987) Tertiary templates for proteins. J Mol Biol 193:775–791. doi:10.1016/0022-2836(87)90358-5

    Article  CAS  PubMed  Google Scholar 

  6. Desmet J, Maeyer MD, Hazes B, Lasters I (1992) The dead-end elimination theorem and its use in protein side-chain positioning. Nature 356:539–542. doi:10.1038/356539a0

    Article  CAS  PubMed  Google Scholar 

  7. Kuhlman B, Baker D (2000) Native protein sequences are close to optimal for their structures. Proc Natl Acad Sci U S A 97:10383–10388. doi:10.1073/pnas.97.19.10383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL et al (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302:1364–1368. doi:10.1126/science.1089427

    Article  CAS  PubMed  Google Scholar 

  9. Voigt CA, Gordon DB, Mayo SL (2000) Trading accuracy for speed: a quantitative comparison of search algorithms in protein sequence design. J Mol Biol 299:789–803. doi:10.1006/jmbi.2000.3758

    Article  CAS  PubMed  Google Scholar 

  10. Gordon DB, Mayo SL (1999) Branch-and-Terminate: a combinatorial optimization algorithm for protein design. Structure 7:1089–1098. doi:10.1016/S0969-2126(99)80176-2

    Article  CAS  PubMed  Google Scholar 

  11. Ollikainen N, Sentovich E, Coelho C, Kuehlmann A, Kortemme T (2009) SAT-based protein design. Proc of ICCAD. pp 128–135

    Google Scholar 

  12. Saunders CT, Baker D (2005) Recapitulation of protein family divergence using flexible backbone protein design. J Mol Biol 346:631–644. doi:10.1016/j.jmb.2004.11.062

    Article  CAS  PubMed  Google Scholar 

  13. Castagnoli L (2004) Selectivity and promiscuity in the interaction network mediated by protein recognition modules. FEBS Lett 567:74–79. doi:10.1016/S0014-5793(04)00491-0

    Article  CAS  PubMed  Google Scholar 

  14. Münz M, Hein J, Biggin PC (2012) The role of flexibility and conformational selection in the binding promiscuity of PDZ domains. PLoS Comput Biol 8:e1002749. doi:10.1371/journal.pcbi.1002749

    Article  PubMed  PubMed Central  Google Scholar 

  15. Smith CA, Kortemme T (2010) Structure-based prediction of the peptide sequence space recognized by natural and synthetic PDZ domains. J Mol Biol 402:460–474. doi:10.1016/j.jmb.2010.07.032

    Article  CAS  PubMed  Google Scholar 

  16. Ollikainen N, Kortemme T (2013) Computational protein design quantifies structural constraints on amino acid covariation. PLoS Comput Biol 9:e1003313. doi:10.1371/journal.pcbi.1003313

    Article  PubMed  PubMed Central  Google Scholar 

  17. Davis IW, Arendall WB III, Richardson DC, Richardson JS (2006) The backrub motion: how protein backbone shrugs when a sidechain dances. Structure 14:265–274. doi:10.1016/j.str.2005.10.007

    Article  CAS  PubMed  Google Scholar 

  18. Smith CA, Kortemme T (2008) Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction. J Mol Biol 380:742–756. doi:10.1016/j.jmb.2008.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Georgiev I, Keedy D, Richardson JS, Richardson DC, Donald BR (2008) Algorithm for backrub motions in protein design. Bioinformatics 24:i196–i204. doi:10.1093/bioinformatics/btn169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J et al (2011) Rosetta3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545–574. doi:10.1016/B978-0-12-381270-4.00019-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Friedland GD, Linares AJ, Smith CA, Kortemme T (2008) A simple model of backbone flexibility improves modeling of side-chain conformational variability. J Mol Biol 380:757–774. doi:10.1016/j.jmb.2008.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ollikainen N, Smith CA, Fraser JS, Kortemme T (2013) Flexible backbone sampling methods to model and design protein alternative conformations. Methods Enzymol 523:61–85. doi:10.1016/B978-0-12-394292-0.00004-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jackson EL, Ollikainen N, Covert AW III, Kortemme T, Wilke CO (2013) Amino-acid site variability among natural and designed proteins. PeerJ 1:e211. doi:10.7717/peerj.211

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ollikainen N, de Jong RM, Kortemme T (2015) Coupling protein side-chain and backbone flexibility improves the re-design of protein-ligand specificity. PLoS Comput Biol 11:e1004335. doi:10.1371/journal.pcbi.1004335

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mandell DJ, Coutsias EA, Kortemme T (2009) Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nat Methods 6:551–552. doi:10.1038/nmeth0809-551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stein A, Kortemme T (2013) Improvements to robotics-inspired conformational sampling in rosetta. PLoS One 8:e63090. doi:10.1371/journal.pone.0063090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Coutsias EA, Seok C, Jacobson MP, Dill KA (2004) A kinematic view of loop closure. J Comput Chem 25:510–528. doi:10.1002/jcc.10416

    Article  CAS  PubMed  Google Scholar 

  28. Rohl CA, Strauss CEM, Misura KMS, Baker D (2004) Protein structure prediction using rosetta. Methods Enzymol 383:66–93. doi:10.1016/S0076-6879(04)83004-0

    Article  CAS  PubMed  Google Scholar 

  29. Simons KT, Kooperberg C, Huang E, Baker D (1997) Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and bayesian scoring functions. J Mol Biol 268:209–225. doi:10.1006/jmbi.1997.0959

    Article  CAS  PubMed  Google Scholar 

  30. Tyka MD, Keedy DA, André I, DiMaio F, Song Y et al (2011) Alternate states of proteins revealed by detailed energy landscape mapping. J Mol Biol 405:607–618. doi:10.1016/j.jmb.2010.11.008

    Article  CAS  PubMed  Google Scholar 

  31. Kellogg EH, Leaver-Fay A, Baker D (2011) Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins 79:830–838. doi:10.1002/prot.22921

    Article  CAS  PubMed  Google Scholar 

  32. Humphris EL, Kortemme T (2008) Prediction of protein-protein interface sequence diversity using flexible backbone computational protein design. Structure 16:1777–1788. doi:10.1016/j.str.2008.09.012

    Article  CAS  PubMed  Google Scholar 

  33. Smith CA, Kortemme T (2011) Predicting the tolerated sequences for proteins and protein interfaces using RosettaBackrub flexible backbone design. PLoS One 6:e20451. doi:10.1371/journal.pone.0020451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lauck F, Smith CA, Friedland GF, Humphris EL, Kortemme T (2010) RosettaBackrub—a web server for flexible backbone protein structure modeling and design. Nucleic Acids Res 38:W569–W575. doi:10.1093/nar/gkq369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN et al (2000) The protein data bank. Nucleic Acids Res 28:235–242. doi:10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tonikian R, Zhang Y, Sazinsky SL, Currell B, Yeh J-H et al (2008) A specificity map for the PDZ domain family. PLoS Biol 6:e239. doi:10.1371/journal.pbio.0060239

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ernst A, Sazinsky SL, Hui S, Currell B, Dharsee M et al (2009) Rapid evolution of functional complexity in a domain family. Sci Signal 2:ra50–ra50. doi:10.1126/scisignal.2000416

    Article  PubMed  Google Scholar 

  38. King CA, Bradley P (2010) Structure-based prediction of protein-peptide specificity in rosetta. Proteins 78:3437–3449. doi:10.1002/prot.22851

    Article  CAS  PubMed  Google Scholar 

  39. Fiser A, Sali A (2003) Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491. doi:10.1016/S0076-6879(03)74020-8

    Article  CAS  PubMed  Google Scholar 

  40. Raveh B, London N, Schueler-Furman O (2010) Sub-angstrom modeling of complexes between flexible peptides and globular proteins. Proteins 78:2029–2040. doi:10.1002/prot.22716

    CAS  PubMed  Google Scholar 

  41. London N, Lamphear CL, Hougland JL, Fierke CA, Schueler-Furman O (2011) Identification of a novel class of farnesylation targets by structure-based modeling of binding specificity. PLoS Comput Biol 7:e1002170. doi:10.1371/journal.pcbi.1002170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. London N, Gullá S, Keating AE, Schueler-Furman O (2012) In Silicoand in VitroElucidation of BH3 binding specificity toward Bcl-2. Biochemistry 51:5841–5850. doi:10.1021/bi3003567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Raveh B, London N, Zimmerman L, Schueler-Furman O (2011) Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors. PLoS One 6:e18934. doi:10.1371/journal.pone.0018934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. London N, Raveh B, Cohen E, Fathi G, Schueler-Furman O (2011) Rosetta FlexPepDock web server—high resolution modeling of peptide-protein interactions. Nucleic Acids Res 39:W249–W253. doi:10.1093/nar/gkr431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kortemme T, Joachimiak LA, Bullock AN, Schuler AD, Stoddard BL et al (2004) Computational redesign of protein-protein interaction specificity. Nat Struct Mol Biol 11:371–379. doi:10.1038/nsmb749

    Article  CAS  PubMed  Google Scholar 

  46. Joachimiak LA, Kortemme T, Stoddard BL, Baker D (2006) Computational design of a new hydrogen bond network and at least a 300-fold specificity switch at a protein − protein interface. J Mol Biol 361:195–208. doi:10.1016/j.jmb.2006.05.022

    Article  CAS  PubMed  Google Scholar 

  47. Kapp GT, Liu S, Stein A et al (2012) Control of protein signaling using a computationally designed GTPase/GEF orthogonal pair. Proc Natl Acad Sci U S A 109:5277–5282. doi:10.1073/pnas.1114487109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sammond DW, Eletr ZM, Purbeck C, Kuhlman B (2010) Computational design of second-site suppressor mutations at protein-protein interfaces. Proteins 78:1055–1065. doi:10.1002/prot.22631/full

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Melero C, Ollikainen N, Harwood I, Karpiak J, Kortemme T (2014) Quantification of the transferability of a designed protein specificity switch reveals extensive epistasis in molecular recognition. Proc Natl Acad Sci U S A 111:15426–15431. doi:10.1073/pnas.1410624111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Roberts KE, Cushing PR, Boisguerin P, Madden DR, Donald BR (2012) Computational design of a PDZ domain peptide inhibitor that rescues CFTR activity. PLoS Comput Biol 8:e1002477. doi:10.1371/journal.pcbi.1002477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Georgiev I, Lilien RH, Donald BR (2008) The minimized dead-end elimination criterion and its application to protein redesign in a hybrid scoring and search algorithm for computing partition functions over molecular ensembles. J Comput Chem 29:1527–1542. doi:10.1002/jcc.20909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Leach AR, Lemon AP (1998) Exploring the conformational space of protein side chains using dead-end elimination and the A* algorithm. Proteins 33:227–239. doi:10.1002/(SICI)1097-0134(19981101)33:2<227::AID-PROT7>3.0.CO;2-F

    Article  CAS  PubMed  Google Scholar 

  53. Pedemonte N, Lukacs GL, Du K, Caci E, Zegarra-Moran O et al (2005) Small-molecule correctors of defective DeltaF508-CFTR cellular processing identified by high-throughput screening. J Clin Investig 115:2564–2571. doi:10.1172/JCI24898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fu X, Apgar JR, Keating AE (2007) Modeling backbone flexibility to achieve sequence diversity: the design of novel α-helical ligands for Bcl-xL. J Mol Biol 371:1099–1117. doi:10.1016/j.jmb.2007.04.069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Emberly EG, Mukhopadhyay R, Wingreen NS, Tang C (2003) Flexibility of α-helices: results of a statistical analysis of database protein structures. J Mol Biol 327:229–237. doi:10.1016/S0022-2836(03)00097-4

    Article  CAS  PubMed  Google Scholar 

  56. ÓConchúir S, Barlow KA, Pache RA, Ollikainen N, Kundert K et al (2015) A web resource for standardized benchmark datasets, metrics, and rosetta protocols for macromolecular modeling and design. PLoS One 10:e0130433. doi:10.1371/journal.pone.0130433

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ollikainen, N. (2017). Flexible Backbone Methods for Predicting and Designing Peptide Specificity. In: Schueler-Furman, O., London, N. (eds) Modeling Peptide-Protein Interactions. Methods in Molecular Biology, vol 1561. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6798-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6798-8_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6796-4

  • Online ISBN: 978-1-4939-6798-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics