Skip to main content

Single Cell Cytochemistry Illustrated by the Demonstration of Glucose-6-Phosphate Dehydrogenase Deficiency in Erythrocytes

  • Protocol
  • First Online:
Histochemistry of Single Molecules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1560))

Abstract

Cytochemistry is the discipline that is applied to visualize specific molecules in individual cells and has become an essential tool in life sciences. Immunocytochemistry was developed in the sixties of last century and is the most frequently used cytochemical application. However, metabolic mapping is the oldest cytochemical approach to localize activity of specific enzymes, but in the last decades of the previous century and the first decade of the present century it almost became obsolete. The popularity of this approach revived in the past few years. Metabolism gained interest as player in chronic and complex diseases such as cancer, diabetes, neurodegenerative diseases, and vascular diseases and both enzyme cytochemistry and metabolic mapping have become important tools in life sciences.

In this chapter, we present glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most prevalent enzyme deficiency worldwide, to illustrate recent developments in enzyme cytochemistry or metabolic mapping. The first assays which were developed quantified enzyme activity but were unreliable for single cell evaluation. The field has expanded with the development of cytochemical single cell assays and DNA testing. Still, all assays—from the earliest developed tests up to the most recently developed tests—have their place in investigations on G6PD activity. Recently, nanoscopy has become available for light and fluorescence microscopy at the nanoscale. For nanoscopy, cytochemistry is an essential tool to visualize intracellular molecular processes. The ultimate goal in the coming years will be nanoscopy of living cells so that the molecular dynamics can be studied. Cytochemistry will undoubtedly play a critical role in these developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heilemann M (2010) Fluorescence microscopy beyond the diffraction limit. J Biotechnol 149(4):243–251. doi:10.1016/j.jbiotec.2010.03.012

    Article  CAS  PubMed  Google Scholar 

  2. Galbraith CG, Galbraith JA (2011) Super-resolution microscopy at a glance. J Cell Sci 124(Pt 10):1607–1611. doi:10.1242/jcs.080085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hell SW (2009) Microscopy and its focal switch. Nat Methods 6(1):24–32. doi:10.1038/nmeth.1291

    Article  CAS  PubMed  Google Scholar 

  4. Gomori G (1939) Microtechnical demonstration of phosphatase in tissue sections. Exp Biol Med 42(1):23–26

    Article  CAS  Google Scholar 

  5. Van Noorden CJ (2010) Imaging enzymes at work: metabolic mapping by enzyme histochemistry. J Histochem Cytochem 58(6):481–497. doi:10.1369/jhc.2010.955518

    Article  PubMed  PubMed Central  Google Scholar 

  6. Van Noorden CJ (2014) Metabolic mapping by (quantitative) enzyme hystochemistry. In: McManus L, Mitchell R (eds) Pathobiology of human disease. Elsevier, San Diego, CA, pp 3760–3774

    Chapter  Google Scholar 

  7. Bleeker FE, Atai NA, Lamba S et al (2010) The prognostic IDH1(R132) mutation is associated with reduced NADP+-dependent IDH activity in glioblastoma. Acta Neuropathol 119(4):487–494. doi:10.1007/s00401-010-0645-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koehler A, Van Noorden CJ (2003) Reduced nicotinamide adenine dinucleotide phosphate and the higher incidence of pollution-induced liver cancer in female flounder. Environm Toxicol Chem 22(11):2703–2710

    Article  CAS  Google Scholar 

  9. Luzzatto L (2006) Glucose 6-phosphate dehydrogenase deficiency: from genotype to phenotype. Haematologica 91(10):1303–1306

    CAS  PubMed  Google Scholar 

  10. Howes RE, Piel FB, Patil AP et al (2012) G6PD deficiency prevalence and estimates of affected populations in malaria endemic countries: a geostatistical model-based map. PLoS Med 9(11), e1001339. doi:10.1371/journal.pmed.1001339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nkhoma ET, Poole C, Vannappagari V et al (2009) The global prevalence of glucose-6-phosphate dehydrogenase deficiency: a systematic review and meta-analysis. Blood Cell Mol Dis 42(3):267–278. doi:10.1016/j.bcmd.2008.12.005

    Article  CAS  Google Scholar 

  12. Peters AL, Van Noorden CJ (2009) Glucose-6-phosphate dehydrogenase deficiency and malaria: cytochemical detection of heterozygous G6PD deficiency in women. J Histochem Cytochem 57(11):1003–1011. doi:10.1369/jhc.2009.953828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guindo A, Fairhurst RM, Doumbo OK et al (2007) X-Linked G6PD deficiency protects hemizygous males but not heterozygous females against severe malaria. PLoS Med 4(3), e66. doi:10.1371/journal.pmed.0040066

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cappellini MD, Fiorelli G (2008) Glucose-6-phosphate dehydrogenase deficiency. Lancet 371(9606):64–74. doi:10.1016/S0140-6736(08)60073-2

    Article  CAS  PubMed  Google Scholar 

  15. Meletis J, Konstantopoulos K (2004) Favism—from the “avoid fava beans” of Pythagoras to the present. Haematology 7(1):17–21

    Google Scholar 

  16. Beutler E (2008) Glucose-6-phosphate dehydrogenase deficiency: a historical perspective. Blood 111(1):16–24. doi:10.1182/blood-2007-04-077412

    Article  CAS  PubMed  Google Scholar 

  17. Dern R, Weinstein IM, Leroy G et al (1954) The hemolytic effect of primaquine. I. The localization of the drug-induced hemolytic defect in primaqulne-sensitive individuals. J Lab Clin Med 43(2):303–309

    CAS  PubMed  Google Scholar 

  18. Crosby WH (1956) Favism in Sardinia (newsletter). Blood 11(1):91–92

    Google Scholar 

  19. Sansone G, Segni G (1958) New aspects of the biochemical alterations in the erythrocytes of patients with favism; almost complete absence of glucose-6-phosphate dehydrogenase. Boll Soc Ital Biol Sper 34(7):327

    CAS  PubMed  Google Scholar 

  20. Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373

    Article  CAS  PubMed  Google Scholar 

  21. Rattazzi MC (1968) Glucose 6-phosphate dehydrogenase from human erythrocytes: molecular weight determination by gel filtration. Biochem Biophys Res Commun 31(1):16–24

    Article  CAS  PubMed  Google Scholar 

  22. Luzzatto L, Battistuzzi G (1985) Glucose-6-phosphate dehydrogenase. Adv Hum Genet 14:217–329

    CAS  PubMed  Google Scholar 

  23. Wrigley NG, Heather JV, Bonsignore A et al (1972) Human erythrocyte glucose 6-phosphate dehydrogenase: electron microscope studies on structure and interconversion of tetramers, dimers and monomers. J Mol Biol 68(3):483–499

    Article  CAS  PubMed  Google Scholar 

  24. Marks PA, Johnson AB, Hirschberg E (1958) Effect of age on the enzyme activity in erythrocytes. Proc Natl Acad Sci U S A 44(6):529–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. WHO Working Group (1989) Glucose-6-phosphate dehydrogenase deficiency. B World Health Organ 67(6):601–611

    Google Scholar 

  26. Beutler E (1994) G6PD deficiency. Blood 84(11):3613–3636

    CAS  PubMed  Google Scholar 

  27. World Health Organization (1967) Standardization of procedures for the study of glucose-6-phosphate dehydrogenase. Report of a WHO Scientific Group. W Health Organ Tech Rep Ser 366:1–53

    Google Scholar 

  28. LaRue N, Kahn M, Murray M et al (2014) Comparison of quantitative and qualitative tests for glucose-6-phosphate dehydrogenase deficiency. Am J Trop Med Hyg 91(4):854–861. doi:10.4269/ajtmh.14-0194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nantakomol D, Paul R, Palasuwan A et al (2013) Evaluation of the phenotypic test and genetic analysis in the detection of glucose-6-phosphate dehydrogenase deficiency. Malar J 12:289. doi:10.1186/1475-2875-12-289

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jonges GN, Hagen H, Van Noorden CJ et al (1989) Comparison between the chromate inhibition test and a cytochemical method for the determination of glucose-6-phosphate dehydrogenase deficiency in erythrocytes. Clin Chim Acta 181(2):135–141

    Article  CAS  PubMed  Google Scholar 

  31. Wolf BH, Weening RS, Schutgens RB et al (1987) Detection of glucose-6-phosphate dehydrogenase deficiency in erythrocytes: a spectrophotometric assay and a fluorescent spot test compared with a cytochemical method. Clin Chim Acta 168(2):129–136

    Article  CAS  PubMed  Google Scholar 

  32. Van Noorden CJ, Vogels IM, James J et al (1982) A sensitive cytochemical staining method for glucose-6-phosphate dehydrogenase activity in individual erythrocytes. I. Optimalization of the staining procedure. Histochemistry 75(4):493–506

    Article  PubMed  Google Scholar 

  33. Van Noorden CJ, Vogels IM (1985) A sensitive cytochemical staining method for glucose-6-phosphate dehydrogenase activity in individual erythrocytes. II. Further improvements of the staining procedure and some observations with glucose-6-phosphate dehydrogenase deficiency. Br J Haematol 60(1):57–63

    Article  PubMed  Google Scholar 

  34. Persico MG, Viglietto G, Martini G et al (1986) Isolation of human glucose-6-phosphate dehydrogenase (G6PD) cDNA clones: primary structure of the protein and unusual 5′ non-coding region. Nucleic Acids Res 14(6):2511–2522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Trask BJ, Massa H, Kenwrick S et al (1991) Mapping of human chromosome Xq28 by two-color fluorescence in situ hybridization of DNA sequences to interphase cell nuclei. Am J Hum Genet 48(1):1–15

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Martini G, Toniolo D, Vulliamy T et al (1986) Structural analysis of the X-linked gene encoding human glucose 6-phosphate dehydrogenase. EMBO J 5(8):1849–1855

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Minucci A, Moradkhani K, Hwang MJ et al (2012) Glucose-6-phosphate dehydrogenase (G6PD) mutations database: review of the “old” and update of the new mutations. Blood Cell Mol Dis 48(3):154–165. doi:10.1016/j.bcmd.2012.01.001

    Article  CAS  Google Scholar 

  38. Von Seidlein L, Auburn S, Espino F et al (2013) Review of key knowledge gaps in glucose-6-phosphate dehydrogenase deficiency detection with regard to the safe clinical deployment of 8-aminoquinoline treatment regimens: a workshop report. Malar J 12:112. doi:10.1186/1475-2875-12-112

    Article  Google Scholar 

  39. Van Noorden CJ, Dolbeare F, Aten J (1989) Flow cytofluorometric analysis of enzyme reactions based on quenching of fluorescence by the final reaction product: detection of glucose-6-phosphate dehydrogenase deficiency in human erythrocytes. J Histochem Cytochem 37(9):1313–1318

    Article  PubMed  Google Scholar 

  40. Shah SS, Diakite SA, Traore K et al (2012) A novel cytofluorometric assay for the detection and quantification of glucose-6-phosphate dehydrogenase deficiency. Sci Rep 2:299. doi:10.1038/srep00299

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelis J. F. van Noorden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Peters, A.L., van Noorden, C.J.F. (2017). Single Cell Cytochemistry Illustrated by the Demonstration of Glucose-6-Phosphate Dehydrogenase Deficiency in Erythrocytes. In: Pellicciari, C., Biggiogera, M. (eds) Histochemistry of Single Molecules. Methods in Molecular Biology, vol 1560. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6788-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6788-9_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6787-2

  • Online ISBN: 978-1-4939-6788-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics