Skip to main content

Multiplex Smartphone Diagnostics

  • Protocol
  • First Online:
Multiplex Biomarker Techniques

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1546))

Abstract

Increasing computing power in smartphones allows for their transformation into point-of-care diagnostic devices. Mobile medical diagnostic applications enable utilization of the processing capabilities of smartphones through their cameras. Hardware attachments or stand-alone versions of smartphone diagnostics have the capability to revolutionize quantitative readouts. Here, we describe a protocol for quantifying commercial colorimetric diagnostic tests with a stand-alone smartphone application. This approach can be used in the multiplexed analyses of biomarker readouts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroemer S, Frühauf J, Campbell TM, Massone C, Schwantzer G, Soyer HP et al (2011) Mobile teledermatology for skin tumour screening: diagnostic accuracy of clinical and dermoscopic image tele-evaluation using cellular phones. Br J Dermatol 164:973–979

    Article  CAS  Google Scholar 

  2. Breslauer DN, Maamari RN, Switz NA, Lam WA, Fletcher DA (2009) Mobile phonebased clinical microscopy for global health applications. PLoS ONE 4:e6320

    Article  Google Scholar 

  3. Smith ZJ, Chu K, Espenson AR, Rahimzadeh M, Gryshuk A, Molinaro M et al (2011) Cell-phone-based platform for biomedical device development and education applications. PLoS ONE 6:e17150

    Article  CAS  Google Scholar 

  4. Pamplona VF, Mohan A, Oliveira MM, Raskar R (2010) Dual of Shack-Hartmann optometry using mobile phones. Frontiers in Optics, Optical Society of America, Rochester, NY, paper FTuB4.doi:10.1364/FIO.2010. FTuB4

    Book  Google Scholar 

  5. Zhu H, Mavandadi S, Coskun AF, Yaglidere O, Ozcan A (2011) Optofluidic fluorescent imaging cytometry on a cell phone. Anal Chem 83:6641–6647

    Article  CAS  Google Scholar 

  6. Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci USA 105:19606–19611

    Article  CAS  Google Scholar 

  7. Wang S, Zhao X, Khimji I, Akbas R, Qiu W, Edwards D et al (2011) Integration of cellphone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care. Lab Chip 11:3411–3418

    Article  CAS  Google Scholar 

  8. Pollock NR, Rolland JP, Kumar S, Beattie PD, Jain S, Noubary F et al (2012) A paper-based multiplexed transaminase test for low-cost, point-of-care liver function testing. Sci Transl Med 4:152ra29

    Article  Google Scholar 

  9. Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13:2210–2251

    Article  CAS  Google Scholar 

  10. Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed Engl 46:1318–1320

    Article  CAS  Google Scholar 

  11. Yetisen AK, Volpatti LR, Humar M, Kwok SJJ, Pavlichenko I, Kim KS et al (2016) Photonic hydrogel sensors. Biotechnol Adv 34:250–271

    Article  CAS  Google Scholar 

  12. Yetisen AK, Naydenova I, Vasconcellos FC, Blyth J, Lowe CR (2014) Holographic sensors: three-dimensional analyte-sensitive nanostructures and their applications. Chem Rev 114:10654–10696

    Article  CAS  Google Scholar 

  13. Yetisen AK, Montelongo Y, Qasim MM, Butt H, Wilkinson TD, Monteiro MJ, Yun SH (2015) Photonic nanosensor for colorimetric detection of metal ions. Anal Chem 87:5101–5108

    Article  CAS  Google Scholar 

  14. Yetisen AK, Montelongo Y, Vasconcellos FC, Martinez-Hurtado JL, Neupane S, Butt H et al (2014) Reusable, robust, and accurate laser-generated photonic nanosensor. Nano Lett 14:3587–3593

    Article  CAS  Google Scholar 

  15. Yetisen AK, Butt H, Vasconcellos FC, Montelongo Y, Davidson CAB, Blyth J et al (2014) Light-directed writing of chemically tunable narrow-band holographic sensors. Adv Opt Mater 2:250–254. doi:10.1002/adom.201300375

    Article  CAS  Google Scholar 

  16. Yetisen AK, Qasim M, Nosheen S, Wilkinson TD, Lowe CR (2014) Pulsed laser writing of holographic nanosensors. J Mater Chem C 2:3569–3576. doi:10.1039/C3TC32507E

    Article  CAS  Google Scholar 

  17. Tsangarides CP, Yetisen AK, Vasconcellos FC, Montelongo Y, Qasim MM, Lowe CR et al (2014) Computational modelling and characterisation of nanoparticle-based tuneable photonic crystal sensors. RSC Adv 4:10454–10461

    Article  CAS  Google Scholar 

  18. Martinez-Hurtado JL, Lowe CR (2014) Ammonia-sensitive photonic structures fabricated in nafion membranes by laser ablation. ACS Appl Mater Interfaces 6:8903–8908

    Article  Google Scholar 

  19. Martínez-Hurtado JL, Davidson CA, Blyth J, Lowe CR (2010) Holographic detection of hydrocarbon gases and other volatile organic compounds. Langmuir 26:15694–15699

    Article  Google Scholar 

  20. Martinez-Hurtado JL, Lowe CR (2015) An integrated photonic-diffusion model for holographic sensors in polymeric matrices. J Membr Sci 495:14–19. doi:10.1016/j.memsci.2015.07.064

    Article  CAS  Google Scholar 

  21. Martinez-Hurtado JL, Akram MS, Yetisen AK (2013) Iridescence in meat caused by surface gratings. Foods 2:499–506. doi:10.3390/foods2040499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yetisen AK, Martinez-Hurtado JL, Vasconcellos FC, Simsekler MCE, Akram MS, Lowe CR (2014) The regulation of mobile medical applications. Lab Chip 14:833–840

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali K. Yetisen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Martinez-Hurtado, J.L., Yetisen, A.K., Yun, SH. (2017). Multiplex Smartphone Diagnostics. In: Guest, P.C. (eds) Multiplex Biomarker Techniques. Methods in Molecular Biology, vol 1546. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-6730-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6730-8_26

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-6729-2

  • Online ISBN: 978-1-4939-6730-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics