Skip to main content

ChIP-seq for the Identification of Functional Elements in the Human Genome

  • Protocol
  • First Online:
Promoter Associated RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1543))

Abstract

Functional elements in the genome express their function through physical association with particular proteins: transcription factors, components of the transcription machinery, specific histone modifications, and others. The genome-wide characterization of the protein-DNA interaction landscape of these proteins is thus a key approach toward the identification of candidate genomic regulatory regions. ChIP-seq (Chromatin Immunoprecipitation coupled with high-throughput sequencing) has emerged as the primary experimental methods for carrying out this task. Here, the ChIP-seq protocol is described together with some of the most important considerations for applying it in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilmour DS, Lis JT (1984) Detecting protein-DNA interactions in vivo: distribution of RNA polymerase on specific bacterial genes. Proc Natl Acad Sci U S A 81:4275–4279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gilmour DS, Lis JT (1985) In vivo interactions of RNA polymerase II with genes of Drosophila melanogaster. Mol Cell Biol 5:2009–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53:937–947

    Article  CAS  PubMed  Google Scholar 

  4. Hecht A, Strahl-Bolsinger S, Grunstein M (1996) Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature 383(6595):92–96

    Article  CAS  PubMed  Google Scholar 

  5. Ren B, Robert F, Wyrick JJ et al (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309

    Article  CAS  PubMed  Google Scholar 

  6. Iyer VR, Horak CE, Scafe CS et al (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409:533–538

    Article  CAS  PubMed  Google Scholar 

  7. Horak CE, Snyder M (2002) ChIP-chip: a genomic approach for identifying transcription factor binding sites. Methods Enzymol 350:469–483

    Article  CAS  PubMed  Google Scholar 

  8. Lieb JD, Liu X, Botstein D, Brown PO (2001) Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nat Genet 28:327–334

    Article  CAS  PubMed  Google Scholar 

  9. Weinmann AS, Yan PS, Oberley MJ et al (2002) Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. Genes Dev 16:235–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  CAS  PubMed  Google Scholar 

  11. Mikkelsen TS, Ku M, Jaffe DB et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Robertson G, Hirst M, Bainbridge M et al (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4:651–657

    Article  CAS  PubMed  Google Scholar 

  13. Johnson DS, Mortazavi A, Myers RM et al (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502

    Article  CAS  PubMed  Google Scholar 

  14. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  Google Scholar 

  15. Gerstein MB, Kundaje A, Hariharan M et al (2012) Architecture of the human regulatory network derived from ENCODE data. Nature 489:91–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mouse ENCODE Consortium (2014) A comparative encyclopedia of DNA elements in the mouse genome. Nature 515:355–364

    Article  Google Scholar 

  17. modENCODE Consortium (2010) Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330:1787–1797

    Article  Google Scholar 

  18. Gerstein MB, Lu ZJ, Van Nostrand EL et al (2010) Integrative analysis of the Caenorhabditi selegans genome by the modENCODE project. Science 330:1775–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Negre N, Brown CD, Ma L et al (2011) A cis-regulatory map of the Drosophila genome. Nature 471:527–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roadmap Epigenomics Consortium (2015) Integrative analysis of 111 reference human epigenomes. Nature 518:317–330

    Article  PubMed Central  Google Scholar 

  21. Kellis M, Hardison RC, Wold BJ et al (2014) Defining functional DNA elements in the human genome. Proc Natl Acad Sci U S A 111:6131–6138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guenther MG, Levine SS, Boyer LA et al (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130:77–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. May D, Blow MJ, Kaplan T et al (2011) Large-scale discovery of enhancers from human heart tissue. Nat Genet 44:89–93

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rada-Iglesias A, Bajpai R, Swigut T et al (2010) A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470:279–283

    Article  PubMed  PubMed Central  Google Scholar 

  25. Visel A, Blow MJ, Li Z et al (2009) ChIPseq accurately predicts tissue-specific activity of enhancers. Nature 457:854–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Visel A, Taher L, Girgis H et al (2013) A high-resolution enhancer atlas of the developing telencephalon. Cell 152:895–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Heintzman ND, Hon GC, Hawkins RD et al (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459:108–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heintzman ND, Stuart RK, Hon G et al (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39:311–318

    Article  CAS  PubMed  Google Scholar 

  29. Bannister AJ, Schneider R, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T (2005) Spatial distribution of di- and trimethyl lysine 36 of histone H3 at active genes. J Biol Chem 280:17732–17736

    Article  CAS  PubMed  Google Scholar 

  30. Nguyen AT, Zhang Y (2011) The diverse functions of Dot1 and H3K79 methylation. Genes Dev 25:1345–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Phillips-Cremins JE, Corces VG (2013) Chromatin insulators: linking genome organization to cellular function. Mol Cell 50:461–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kyrchanova O, Georgiev P (2014) Chromatin insulators and long-distance interactions in Drosophila. FEBS Lett 588:8–14

    Article  CAS  PubMed  Google Scholar 

  33. Mortazavi A, Pepke S, Jansen C et al (2013) Integrating and mining the chromatin landscape of cell-type specificity using self-organizing maps. Genome Res 23:2136–2148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hoffman MM, Ernst J, Wilder SP et al (2013) Integrative annotation of chromatin elements from ENCODE data. Nucleic Acids Res 41:827–841

    Article  CAS  PubMed  Google Scholar 

  35. Ernst J, Kellis M (2012) ChromHMM: automating chromatin-state discovery and characterization. Nat Methods 9:215–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Savic D, Gertz J, Jain P, Cooper GM, Myers RM (2013) Mapping genome-wide transcription factor binding sites in frozen tissues. Epigenetics Chromatin 6:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gasper WC, Marinov GK, Pauli-Behn F et al (2014) Fully automated high-throughput chromatin immunoprecipitation for ChIP-seq: identifying ChIP-quality p300 monoclonal antibodies. Sci Rep 4:5152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen Y, Negre N, Li Q et al (2012) Systematic evaluation of factors influencing ChIP-seq fidelity. Nat Methods 9:609–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang C, Xu J, Zhang D et al (2010) An effective approach for identification of in vivo protein-DNA binding sites from paired-end ChIP-Seq data. BMC Bioinformatics 11:81

    Article  PubMed  PubMed Central  Google Scholar 

  40. Landt SG, Marinov GK, Kundaje A et al (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 22:1813–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Marinov GK, Kundaje A, Park PJ et al (2014) Large-scale quality analysis of published ChIP-seq data. G3 (Bethesda) 4:209–223

    Article  Google Scholar 

  42. Daley T, Smith AD (2013) Predicting the molecular complexity of sequencing libraries. Nat Methods 10:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pepke S, Wold B, Mortazavi A (2009) Computation for ChIP-seq and RNA-seq studies. Nat Methods 6:S22–S32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jung YL, Luquette LJ, Ho JW et al (2014) Impact of sequencing depth in ChIP-seq experiments. Nucleic Acids Res 42:e74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Niu W, Lu ZJ, Zhong M et al (2011) Diverse transcription factor binding features revealed by genome-wide ChIP-seq in C. elegans. Genome Res 21:245–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zeng PY, Vakoc CR, Chen ZC et al (2006) In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation. Biotechniques 41:694

    Article  CAS  PubMed  Google Scholar 

  47. Blum R, Vethantham V, Bowman C et al (2012) Genome-wide identification of enhancers in skeletal muscle: the role of MyoD1. Genes Dev 26:2763–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Law MJ, Lower KM, Voon HP et al (2010) ATR-X syndrome protein targets tandem repeats and influences allele-specific expression in a size-dependent manner. Cell 143:367–378

    Article  CAS  PubMed  Google Scholar 

  49. Tian B, Yang J, Brasier AR (2012) Two-step cross-linking for analysis of protein-chromatin interactions. Methods Mol Biol 809:105–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nowak DE, Tian B, Brasier AR (2005) Two-step cross-linking method for identification of NF-κB gene network by chromatin immunoprecipitation. Biotechniques 39:715–725

    Article  CAS  PubMed  Google Scholar 

  51. Lin YC, Benner C, Mansson R et al (2012) Global changes in the nuclear positioning of genes and intra- and inter-domain genomic interactions that orchestrate B cell fate. Nat Immunol 13:1196–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li G, Ruan X, Auerbach RK et al (2012) Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148:84–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Auerbach RK, Euskirchen G, Rozowsky J et al (2009) Mapping accessible chromatin regions using Sono-Seq. Proc Natl Acad Sci U S A 106:14926–14931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Park D, Lee Y, Bhupindersingh G, Iyer VR (2013) WidespreadmisinterpretableChIP-seq bias in yeast. PLoS One 8:e83506

    Article  PubMed  PubMed Central  Google Scholar 

  55. Teytelman L, Thurtle DM, Rine J, van Oudenaarden A (2013) Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proc Natl Acad Sci U S A 110:18602–18607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kasinathan S, Orsi GA, Zentner GE et al (2014) High-resolution mapping of transcription factor binding sites on native chromatin. Nat Methods 11:203–209

    Article  CAS  PubMed  Google Scholar 

  57. Tseng Z, Wu T, Liu Y et al (2014) Using native chromatin immunoprecipitation to interrogate histone variant protein deposition in embryonic stem cells. Methods Mol Biol 1176:11–22

    Article  CAS  PubMed  Google Scholar 

  58. Egelhofer TA, Minoda A, Klugman S et al (2011) An assessment of histone-modification antibody quality. Nat Struct Mol Biol 18:91–93

    Article  CAS  PubMed  Google Scholar 

  59. Wal M, Pugh BF (2012) Genome-wide mapping of nucleosome positions in yeast using high-resolution MNaseChIP-Seq. Methods Enzymol 513:233–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Adli M, Zhu J, Bernstein BE (2010) Genome-wide chromatin maps derived from limited numbers of hematopoietic progenitors. Nat Methods 7:615–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Brind’Amour J, Liu S, Hudson M et al (2015) An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations. Nat Commun 6:6033

    Article  PubMed  Google Scholar 

  62. Jakobsen JS, Bagger FO, Hasemann MS et al (2015) Amplification of pico-scale DNA mediated by bacterial carrier DNA for small-cell-number transcription factor ChIP-seq. BMC Genomics 16:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gilfillan GD, Hughes T, Sheng Y et al (2012) Limitations and possibilities of low cell number ChIP-seq. BMC Genomics 13:645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shankaranarayanan P, Mendoza-Parra MA, Walia M et al (2011) Single-tube linear DNA amplification (LinDA) for robust ChIP-seq. Nat Methods 8:565–567

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author wishes to thank members of the Barbara Wold and Richard Myers labs and of the ENCODE Consortium for many helpful discussions, and Gilberto DeSalvo and Matthew D. Smalley for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgi K. Marinov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Marinov, G.K. (2017). ChIP-seq for the Identification of Functional Elements in the Human Genome. In: Napoli, S. (eds) Promoter Associated RNA. Methods in Molecular Biology, vol 1543. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6716-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6716-2_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6714-8

  • Online ISBN: 978-1-4939-6716-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics