Skip to main content

3D d STORM Imaging of Fixed Brain Tissue

  • Protocol
  • First Online:
Synapse Development

Abstract

Central nervous system tissue contains a high density of synapses each composed of an intricate molecular machinery mediating precise transmission of information. Deciphering the molecular nanostructure of pre- and postsynaptic specializations within such a complex tissue architecture poses a particular challenge for light microscopy. Here, we describe two approaches suitable to examine the molecular nanostructure of synapses at 20–30 nm lateral and 50–70 nm axial resolution within an area of 500 μm × 500 μm and a depth of 0.6 μm to several micrometers. We employ single-molecule localization microscopy (SMLM) on immunolabeled fixed brain tissue slices. tomoSTORM utilizes array tomography to achieve SMLM in 40 nm thick resin-embedded sections. dSTORM of cryo-sectioned slices uses optical sectioning in 0.1–4 μm thick hydrated sections. Both approaches deliver 3D nanolocalization of two or more labeled proteins within a defined tissue volume. We review sample preparation, data acquisition, analysis, and interpretation.

Correspondence may be addressed to either author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Furstenberg A, Heilemann M (2013) Single-molecule localization microscopy-near-molecular spatial resolution in light microscopy with photoswitchable fluorophores. Phys Chem Chem Phys 15(36):14919–14930

    Article  PubMed  Google Scholar 

  2. Dani A et al (2010) Superresolution imaging of chemical synapses in the brain. Neuron 68(5):843–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nanguneri S et al (2012) Three-dimensional, tomographic super-resolution fluorescence imaging of serially sectioned thick samples. PLoS One 7(5), e38098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Micheva KD, Smith SJ (2007) Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55(1):25–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tokuyasu KT, Dutton AH, Singer SJ (1983) Immunoelectron microscopic studies of desmin (skeletin) localization and intermediate filament organization in chicken cardiac muscle. J Cell Biol 96(6):1736–1742

    Article  CAS  PubMed  Google Scholar 

  6. Heilemann M et al (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 47(33):6172–6176

    Article  CAS  PubMed  Google Scholar 

  7. Huang B et al (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319(5864):810–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smith CS et al (2010) Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods 7(5):373–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Betzig E et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Article  CAS  PubMed  Google Scholar 

  12. Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kao HP, Verkman AS (1994) Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. Biophys J 67(3):1291–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shtengel G et al (2009) Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci U S A 106(9):3125–3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pavani SR et al (2009) Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc Natl Acad Sci U S A 106(9):2995–2999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Juette MF et al (2008) Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat Methods 5(6):527–529

    Article  CAS  PubMed  Google Scholar 

  17. Wimmer VC, Nevian T, Kuner T (2004) Targeted in vivo expression of proteins in the calyx of Held. Pflugers Arch 449(3):319–333

    CAS  PubMed  Google Scholar 

  18. Horstmann H et al (2012) Serial section scanning electron microscopy (S3EM) on silicon wafers for ultra-structural volume imaging of cells and tissues. PLoS One 7(4), e35172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dempsey GT et al (2011) Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods 8(12):1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heilemann M et al (2005) Carbocyanine dyes as efficient reversible single-molecule optical switch. J Am Chem Soc 127(11):3801–3806

    Article  CAS  PubMed  Google Scholar 

  21. Flottmann B et al (2013) Correlative light microscopy for high-content screening. Biotechniques 55(5):243–252

    Article  CAS  PubMed  Google Scholar 

  22. Lampe A et al (2012) Multi-colour direct STORM with red emitting carbocyanines. Biol Cell 104(4):229–237

    Article  CAS  PubMed  Google Scholar 

  23. Wolter S et al (2010) Real-time computation of subdiffraction-resolution fluorescence images. J Microsc 237(1):12–22

    Article  CAS  PubMed  Google Scholar 

  24. Ovesny M et al (2014) ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30(16):2389–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mlodzianoski MJ et al (2011) Sample drift correction in 3D fluorescence photoactivation localization microscopy. Opt Express 19(16):15009–15019

    Article  PubMed  Google Scholar 

  26. Endesfelder U et al (2014) A simple method to estimate the average localization precision of a single-molecule localization microscopy experiment. Histochem Cell Biol 141(6):629–638

    Article  CAS  PubMed  Google Scholar 

  27. Banterle N et al (2013) Fourier ring correlation as a resolution criterion for super-resolution microscopy. J Struct Biol 183(3):363–367

    Article  CAS  PubMed  Google Scholar 

  28. Nieuwenhuizen RP et al (2013) Measuring image resolution in optical nanoscopy. Nat Methods 10(6):557–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Takamori S et al (2006) Molecular anatomy of a trafficking organelle. Cell 127(4):831–846

    Article  CAS  PubMed  Google Scholar 

  30. Wieneke R et al (2015) SLAP: small-molecule labelling of proteins for super-resolution imaging. Angew Chem Int Ed Engl 54(35):10216–10219

    Article  CAS  PubMed  Google Scholar 

  31. Raulf A et al (2014) Click chemistry facilitates direct labelling and super-resolution imaging of nucleic acids and proteins. RSC Adv 4(57):30462–30466

    Google Scholar 

  32. Doose S, Neuweiler H, Sauer M (2009) Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules. Chemphyschem 10(9–10):1389–1398

    Article  CAS  PubMed  Google Scholar 

  33. Nanguneri S et al (2014) Single-molecule super-resolution imaging by tryptophan-quenching-induced photoswitching of phalloidin-fluorophore conjugates. Microsc Res Tech 77(7):510–516

    Article  CAS  PubMed  Google Scholar 

  34. Dondzillo A et al (2010) Targeted three-dimensional immunohistochemistry reveals localization of presynaptic proteins Bassoon and Piccolo in the rat calyx of Held before and after the onset of hearing. J Comp Neurol 518(7):1008–1029

    Article  CAS  PubMed  Google Scholar 

  35. Tokunaga M, Imamoto N, Sakata-Sogawa K (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5(2):159–161

    Article  CAS  PubMed  Google Scholar 

  36. Venkataramani V, Herrmannsdörfer F, Heilemann M, Kuner T (2016) SuReSim: simulating localization microscopy experiments from ground truth models. Nat Methods 13(4): 319-321(1):25–36

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kuner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Herrmannsdörfer, F. et al. (2017). 3D d STORM Imaging of Fixed Brain Tissue. In: Poulopoulos, A. (eds) Synapse Development. Methods in Molecular Biology, vol 1538. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6688-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6688-2_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6686-8

  • Online ISBN: 978-1-4939-6688-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics