Skip to main content

Autophagy Detection During Oncogene-Induced Senescence Using Fluorescence Microscopy

  • Protocol
  • First Online:
Oncogene-Induced Senescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1534))

Abstract

Oncogene-induced senescence (OIS) is a highly dynamic process, involving several different effector mechanisms, the multitude and combination of which likely determines the quality of the phenotype (Pérez-Mancera et al., Nat Rev Cancer 14:547–558, 2014). Autophagy, a cellular degradation process, has been proposed to be one of these senescence effectors, although its functional relevance seems highly context dependent (Hoare et al., Semin Cancer Biol 21:397–404, 2011). A number of methods for monitoring autophagy are available, and several excellent protocols have been published in this journal (Klionsky et al., Autophagy 8:445–544, 2012; Tooze et al., Methods Mol Biol 1270:155–165, 2015; Tabata et al., Methods Mol Biol 931:449–466, 2013; Young and Tooze, Methods Mol Biol 445:147–157, 2008). The same principles apply to models of OIS in culture. Thus, in this chapter, we describe how to generate OIS cells using human diploid fibroblasts (HDFs), the best-characterized cell model of OIS, and how to detect autophagy, particularly focusing on immunofluorescence methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pérez-Mancera PA, Young ARJ, Narita M (2014) Inside and out: the activities of senescence in cancer. Nat Rev Cancer 14:547–558. doi:10.1038/nrc3773

    Article  PubMed  Google Scholar 

  2. Hoare M, Young ARJ, Narita M (2011) Autophagy in cancer: having your cake and eating it. Semin Cancer Biol 21:397–404. doi:10.1016/j.semcancer.2011.09.004

    CAS  PubMed  Google Scholar 

  3. Salama R, Sadaie M, Hoare M, Narita M (2014) Cellular senescence and its effector programs. Genes Dev 28:99–114. doi:10.1101/gad.235184.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Coppé J-P, Desprez P-Y, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol Mech Dis 5:99–118. doi:10.1146/annurev-pathol-121808-102144

    Article  Google Scholar 

  5. Kuilman T, Peeper DS (2009) Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer 9:81–94. doi:10.1038/nrc2560

    Article  CAS  PubMed  Google Scholar 

  6. Lamb CA, Yoshimori T, Tooze SA (2013) The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 14:759–774. doi:10.1038/nrm3696

    Article  CAS  PubMed  Google Scholar 

  7. Klionsky DJ, Abdelmohsen K, Abe A et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12(1):1–222. doi:10.1080/15548627.2015.1100356

  8. Tooze SA, Dooley HC, Jefferies HBJ et al (2015) Assessing mammalian autophagy. Methods Mol Biol 1270:155–165. doi:10.1007/978-1-4939-2309-0_12

    Article  CAS  PubMed  Google Scholar 

  9. Tabata K, Hayashi-Nishino M, Noda T et al (2013) Morphological analysis of autophagy. Methods Mol Biol 931:449–466. doi:10.1007/978-1-62703-056-4_23

    Article  CAS  PubMed  Google Scholar 

  10. Young A, Tooze S (2008) Protein trafficking into autophagosomes. Methods Mol Biol 445:147–157. doi:10.1007/978-1-59745-157-4_10

    Article  CAS  PubMed  Google Scholar 

  11. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075. doi:10.1038/nature06639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7:279–296. doi:10.4161/auto.7.3.14487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Katsuragi Y, Ichimura Y, Komatsu M (2015) p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J. doi:10.1111/febs.13540

    PubMed  Google Scholar 

  14. Young ARJ, Narita M, Ferreira M et al (2009) Autophagy mediates the mitotic senescence transition. Genes Dev 23:798–803. doi:10.1101/gad.519709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Narita M, Young ARJ, Arakawa S et al (2011) Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 332:966–970. doi:10.1126/science.1205407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kang C, Xu Q, Martin TD et al (2015) The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349:aaa5612. doi: 10.1126/science.aaa5612

  17. Laberge R-M, Sun Y, Orjalo AV et al (2015) MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol 17:1049–1061. doi:10.1038/ncb3195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Herranz N, Gallage S, Mellone M et al (2015) mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol 17:1205–1217. doi:10.1038/ncb3225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bar-Peled L, Sabatini DM (2014) Regulation of mTORC1 by amino acids. Trends Cell Biol 24:400–406. doi:10.1016/j.tcb.2014.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu L, Mcphee CK, Zheng L et al (2010) Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465:942–946. doi:10.1038/nature09076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326. doi:10.1016/j.cell.2010.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3:542–545

    Article  CAS  PubMed  Google Scholar 

  23. Berthois Y, Katzenellenbogen JA, Katzenellenbogen BS (1986) Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci U S A 83:2496–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Andrew Young for critical reading. This work was supported by the University of Cambridge, Cancer Research UK, Hutchison Whampoa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Narita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Narita, M., Narita, M. (2017). Autophagy Detection During Oncogene-Induced Senescence Using Fluorescence Microscopy. In: Nikiforov, M. (eds) Oncogene-Induced Senescence. Methods in Molecular Biology, vol 1534. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6670-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6670-7_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6668-4

  • Online ISBN: 978-1-4939-6670-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics