Skip to main content

Detecting Markers of Therapy-Induced Senescence in Cancer Cells

  • Protocol
  • First Online:
Oncogene-Induced Senescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1534))

Abstract

Therapy-induced senescence (TIS), a lasting chemotherapy-evoked proliferative arrest of tumor cells, has gained increasing attention by cancer researchers because of its’ profound biological implications, and by clinical oncologists due to its potential contribution to the long-term outcome of cancer patients post-treatment. Although both apoptosis and senescence represent therapy-inducible, ultimate cell-cycle exit programs, mediated via DNA damage response signaling, apoptotic cell death as the faster and often quantitatively more prominent tumor response has been in the scientific focus for decades. The more recently recognized TIS as another “safeguard” response of cancer cells that were never primed for or failed to execute apoptosis, not only reflects a more complex “arrest-plus-other features” cell-autonomous condition but produces non-cell-autonomous phenotypes at the tumor site, collectively impinging on tumor control and clinical outcome. Hence, TIS research is gaining pivotal interest from both a tumor biological and a therapeutic perspective, and the development of non-DNA damaging, senescence-evoking therapeutics is about to become a major research objective. In this chapter, we describe a well-characterized, genetically controlled TIS model system based on primary BCL2-expressing Eμ-myc transgenic lymphoma cells harboring defined genetic lesions and provide protocols for co-staining of either senescence-associated β-galactosidase (SA-β-gal) activity or trimethylated lysine 9 of histone H3 (H3K9me3) together with Ki67 to detect the senescent status of therapy-exposed cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collado M, Blasco MA, Serrano M (2007) Cellular senescence in cancer and aging. Cell 130:223–233

    Article  CAS  PubMed  Google Scholar 

  2. Kuilman T, Michaloglou C, Mooi WJ et al (2010) The essence of senescence. Genes Dev 24:2463–2479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Salama R, Sadaie M, Hoare M et al (2014) Cellular senescence and its effector programs. Genes Dev 28:99–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. van Deursen JM (2014) The role of senescent cells in ageing. Nature 509:439–446

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bartkova J, Rezaei N, Liontos M et al (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444:633–637

    Article  CAS  PubMed  Google Scholar 

  6. Di Micco R, Fumagalli M, Cicalese A et al (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444:638–642

    Article  PubMed  Google Scholar 

  7. Braig M, Lee S, Loddenkemper C et al (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436:660–665

    Article  CAS  PubMed  Google Scholar 

  8. Narita M, Nunez S, Heard E et al (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716

    Article  CAS  PubMed  Google Scholar 

  9. Baker DJ, Wijshake T, Tchkonia T et al (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Collado M, Serrano M (2006) The power and the promise of oncogene-induced senescence markers. Nat Rev Cancer 6:472–476

    Article  CAS  PubMed  Google Scholar 

  11. Dimri GP, Lee X, Basile G et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92:9363–9367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharpless NE, Sherr CJ (2015) Forging a signature of in vivo senescence. Nat Rev Cancer 15:397–408

    Article  CAS  PubMed  Google Scholar 

  13. Chang BD, Broude EV, Dokmanovic M et al (1999) A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 59:3761–3767

    CAS  PubMed  Google Scholar 

  14. Chang BD, Xuan Y, Broude EV et al (1999) Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene 18:4808–4818

    Article  CAS  PubMed  Google Scholar 

  15. Dorr JR, Yu Y, Milanovic M et al (2013) Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 501:421–425

    Article  PubMed  Google Scholar 

  16. Jing H, Kase J, Dorr JR et al (2011) Opposing roles of NF-kappaB in anti-cancer treatment outcome unveiled by cross-species investigations. Genes Dev 25:2137–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schmitt CA, Fridman JS, Yang M et al (2002) Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1:289–298

    Article  CAS  PubMed  Google Scholar 

  18. Schmitt CA, Fridman JS, Yang M et al (2002) A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109:335–346

    Article  CAS  PubMed  Google Scholar 

  19. Schmitt CA, Lowe SW (2002) Apoptosis and chemoresistance in transgenic cancer models. J Mol Med 80:137–146

    Article  CAS  PubMed  Google Scholar 

  20. Schmitt CA, Rosenthal CT, Lowe SW (2000) Genetic analysis of chemoresistance in primary murine lymphomas. Nat Med 6:1029–1035

    Article  CAS  PubMed  Google Scholar 

  21. te Poele RH, Okorokov AL, Jardine L et al (2002) DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 62:1876–1883

    Google Scholar 

  22. Acosta JC, Ferrandiz N, Bretones G et al (2008) Myc inhibits p27-induced erythroid differentiation of leukemia cells by repressing erythroid master genes without reversing p27-mediated cell cycle arrest. Mol Cell Biol 28:7286–7295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Acosta JC, O’Loghlen A, Banito A et al (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133:1006–1018

    Article  CAS  PubMed  Google Scholar 

  24. Acosta JC, O’Loghlen A, Banito A et al (2008) Control of senescence by CXCR2 and its ligands. Cell Cycle 7:2956–2959

    Article  CAS  PubMed  Google Scholar 

  25. Acosta JC, Snijders AP, Gil J (2013) Unbiased characterization of the senescence-associated secretome using SILAC-based quantitative proteomics. Methods Mol Biol 965:175–184

    Article  CAS  PubMed  Google Scholar 

  26. Coppe JP, Patil CK, Rodier F et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868

    Article  CAS  PubMed  Google Scholar 

  27. Krtolica A, Parrinello S, Lockett S et al (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A 98:12072–12077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuilman T, Michaloglou C, Vredeveld LC et al (2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133:1019–1031

    Article  CAS  PubMed  Google Scholar 

  29. Kuilman T, Peeper DS (2009) Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer 9:81–94

    Article  CAS  PubMed  Google Scholar 

  30. Kang TW, Yevsa T, Woller N et al (2011) Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479:547–551

    Article  CAS  PubMed  Google Scholar 

  31. Xue W, Zender L, Miething C et al (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kaplon J, Zheng L, Meissl K et al (2013) A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 498:109–112

    Article  CAS  PubMed  Google Scholar 

  33. Shah PP, Donahue G, Otte GL et al (2013) Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev 27:1787–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Young AR, Narita M (2009) SASP reflects senescence. EMBO Rep 10:228–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang R, Poustovoitov MV, Ye X et al (2005) Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 8:19–30

    Article  CAS  PubMed  Google Scholar 

  36. Reimann M, Lee S, Loddenkemper C et al (2010) Tumor stroma-derived TGF-beta limits Myc-driven lymphomagenesis via Suv39h1-dependent senescence. Cancer Cell 17:262–272

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens A. Schmitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fan, D.N.Y., Schmitt, C.A. (2017). Detecting Markers of Therapy-Induced Senescence in Cancer Cells. In: Nikiforov, M. (eds) Oncogene-Induced Senescence. Methods in Molecular Biology, vol 1534. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6670-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6670-7_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6668-4

  • Online ISBN: 978-1-4939-6670-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics