Skip to main content

Computational Protein Design Under a Given Backbone Structure with the ABACUS Statistical Energy Function

  • Protocol
  • First Online:
Computational Protein Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1529))

Abstract

An important objective of computational protein design is to identify amino acid sequences that stably fold into a given backbone structure. A general approach to this problem is to minimize an energy function in the sequence space. We have previously reported a method to derive statistical energies for fixed-backbone protein design and showed that it led to de novo proteins that fold as expected. Here, we present the usage of the program that implements this method, which we now name as ABACUS (A Backbone-based Amino aCid Usage Survey).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kamtekar S, Schiffer JM, Xiong H, Babik JM, Hecht MH (1993) Protein design by binary patterning of polar and nonpolar amino acids. Science 262(5140):1680–1685

    Article  CAS  PubMed  Google Scholar 

  2. Fedorov AN, Dolgikh DA, Chemeris VV, Chernov BK, Finkelstein AV, Schulga AA, Alakhov Yu B, Kirpichnikov MP, Ptitsyn OB (1992) De novo design, synthesis and study of albebetin, a polypeptide with a predetermined three-dimensional structure. Probing the structure at the nanogram level. J Mol Biol 225(4):927–931

    Article  CAS  PubMed  Google Scholar 

  3. Marshall SA, Mayo SL (2001) Achieving stability and conformational specificity in designed proteins via binary patterning. J Mol Biol 305(3):619–631. doi:10.1006/jmbi.2000.4319

    Article  CAS  PubMed  Google Scholar 

  4. Dahiyat BI, Mayo SL (1997) De novo protein design: fully automated sequence selection. Science 278(5335):82–87

    Article  CAS  PubMed  Google Scholar 

  5. Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302(5649):1364–1368. doi:10.1126/science.1089427

    Article  CAS  PubMed  Google Scholar 

  6. Gainza P, Roberts KE, Georgiev I, Lilien RH, Keedy DA, Chen CY, Reza F, Anderson AC, Richardson DC, Richardson JS, Donald BR (2013) OSPREY: protein design with ensembles, flexibility, and provable algorithms. Methods Enzymol 523:87–107. doi:10.1016/B978-0-12-394292-0.00005-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li Z, Yang Y, Zhan J, Dai L, Zhou Y (2013) Energy functions in de novo protein design: current challenges and future prospects. Annu Rev Biophys 42:315–335. doi:10.1146/annurev-biophys-083012-130315

    Article  CAS  PubMed  Google Scholar 

  8. Xiong P, Wang M, Zhou X, Zhang T, Zhang J, Chen Q, Liu H (2014) Protein design with a comprehensive statistical energy function and boosted by experimental selection for foldability. Nat Commun 5:5330. doi:10.1038/ncomms6330

    Article  CAS  PubMed  Google Scholar 

  9. Foit L, Morgan GJ, Kern MJ, Steimer LR, von Hacht AA, Titchmarsh J, Warriner SL, Radford SE, Bardwell JC (2009) Optimizing protein stability in vivo. Mol Cell 36(5):861–871. doi:10.1016/j.molcel.2009.11.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pokala N, Handel TM (2005) Energy functions for protein design: adjustment with protein-protein complex affinities, models for the unfolded state, and negative design of solubility and specificity. J Mol Biol 347(1):203–227. doi:10.1016/j.jmb.2004.12.019

    Article  CAS  PubMed  Google Scholar 

  11. Frishman D, Argos P (1995) Knowledge-based protein secondary structure assignment. Proteins 23(4):566–579. doi:10.1002/prot.340230412

    Article  CAS  PubMed  Google Scholar 

  12. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190. doi:10.1101/gr.849004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work has been supported by Chinese Ministry of Science and Technology (2011CBA00803 to Q.C. and 2012AA02A704 to H.L.) and National Natural Science Foundation of China (31200546 to Q.C. and 31370755 to H.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quan Chen or Haiyan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Xiong, P., Chen, Q., Liu, H. (2017). Computational Protein Design Under a Given Backbone Structure with the ABACUS Statistical Energy Function. In: Samish, I. (eds) Computational Protein Design. Methods in Molecular Biology, vol 1529. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6637-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6637-0_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6635-6

  • Online ISBN: 978-1-4939-6637-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics