Skip to main content

Using Fluorescence Resonance Energy Transfer-Based Biosensors to Probe Rho GTPase Activation During Phagocytosis

  • Protocol
  • First Online:
Phagocytosis and Phagosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1519))

Abstract

The p21-family members of Rho GTPases are important for the control of actin cytoskeleton dynamics, and are critical regulators of phagocytosis. The three-dimensional structure of phagosomes and the highly compartmentalized nature of the signaling mechanisms during phagocytosis require high-resolution imaging using ratiometric biosensors to decipher Rho GTPase activities regulating phagosome formation and function. Here we describe methods for the expression and ratiometric imaging of FRET-based Rho GTPase biosensors in macrophages during phagocytosis. As an example, we show Cdc42 activity at the phagosome over Z-serial planes. In addition, we demonstrate the usage of a new, fast, and user-friendly deconvolution package that delivers significant improvements in the attainable details of Rho GTPase activity in phagosome structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rougerie P, Miskolci V, Cox D (2013) Generation of membrane structures during phagocytosis and chemotaxis of macrophages: role and regulation of the actin cytoskeleton. Immunol Rev 256:222–239

    Article  CAS  PubMed  Google Scholar 

  2. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  CAS  PubMed  Google Scholar 

  3. Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118:843–846

    Article  CAS  PubMed  Google Scholar 

  4. Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269

    Article  CAS  PubMed  Google Scholar 

  5. Bishop AL, Hall A (2000) Rho GTPases and their effector proteins. Biochem J 348(Pt 2):241–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9:690–701

    Article  CAS  PubMed  Google Scholar 

  7. Caron E, Hall A (1998) Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282:1717–1721

    Article  CAS  PubMed  Google Scholar 

  8. Cox D, Chang P, Zhang Q, Reddy PG, Bokoch GM, Greenberg S (1997) Requirements for both Rac1 and Cdc42 in membrane ruffling and phagocytosis in leukocytes. J Exp Med 186:1487–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jennings RT, Knaus UG (2014) Rho family and Rap GTPase activation assays. Methods Mol Biol 1124:79–88

    Article  CAS  PubMed  Google Scholar 

  10. Pertz O (2010) Spatio-temporal Rho GTPase signaling—where are we now? J Cell Sci 123:1841–1850

    Article  CAS  PubMed  Google Scholar 

  11. Hoppe AD, Swanson JA (2004) Cdc42, Rac1, and Rac2 display distinct patterns of activation during phagocytosis. Mol Biol Cell 15:3509–3519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hanna S, Miskolci V, Cox D, Hodgson L (2014) A new genetically encoded single-chain biosensor for Cdc42 based on FRET, useful for live-cell imaging. PLoS One 9, e96469

    Article  PubMed  PubMed Central  Google Scholar 

  13. Moshfegh Y, Bravo-Cordero JJ, Miskolci V, Condeelis J, Hodgson L (2014) A Trio-Rac1-Pak1 signalling axis drives invadopodia disassembly. Nat Cell Biol 16:574–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Spiering D, Bravo-Cordero JJ, Moshfegh Y, Miskolci V, Hodgson L (2013) Quantitative ratiometric imaging of FRET-biosensors in living cells. Methods Cell Biol 114:593–609

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hodgson L, Shen F, Hahn K (2010) Biosensors for characterizing the dynamics of rho family GTPases in living cells. Curr Protoc Cell Biol. Chapter 14, Unit 14 11 11–26

    Google Scholar 

  16. An W, Telesnitsky A (2002) Effects of varying sequence similarity on the frequency of repeat deletion during reverse transcription of a human immunodeficiency virus type 1 vector. J Virol 76:7897–7902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Delviks KA, Pathak VK (1999) Effect of distance between homologous sequences and 3' homology on the frequency of retroviral reverse transcriptase template switching. J Virol 73:7923–7932

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu B, Miskolci V, Sato H, Tutucci E, Kenworthy CA, Donnelly SK et al (2015) Synonymous modification results in high-fidelity gene expression of repetitive protein and nucleotide sequences. Genes Dev 29:876–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qin JY, Zhang L, Clift KL, Hulur I, Xiang AP, Ren BZ et al (2010) Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS One 5, e10611

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ramezani A, Hawley TS, Hawley RG (2000) Lentiviral vectors for enhanced gene expression in human hematopoietic cells. Mol Ther 2:458–469

    Article  CAS  PubMed  Google Scholar 

  21. Salmon P, Kindler V, Ducrey O, Chapuis B, Zubler RH, Trono D (2000) High-level transgene expression in human hematopoietic progenitors and differentiated blood lineages after transduction with improved lentiviral vectors. Blood 96:3392–3398

    CAS  PubMed  Google Scholar 

  22. Loew R, Heinz N, Hampf M, Bujard H, Gossen M (2010) Improved Tet-responsive promoters with minimized background expression. BMC Biotechnol 10:81

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhou X, Vink M, Klaver B, Berkhout B, Das AT (2006) Optimization of the Tet-On system for regulated gene expression through viral evolution. Gene Ther 13:1382–1390

    Article  CAS  PubMed  Google Scholar 

  24. Khader H, Solodushko V, Al-Mehdi AB, Audia J, Fouty B (2013) Overlap of doxycycline fluorescence with that of the redox-sensitive intracellular reporter roGFP. J Fluoresc 24:305–311

    Article  PubMed  Google Scholar 

  25. Spiering D, Hodgson L (2012) Multiplex imaging of Rho family GTPase activities in living cells. Methods Mol Biol 827:215–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shen F, Hodgson L, Rabinovich A, Pertz O, Hahn K, Price JH (2006) Functional proteometrics for cell migration. Cytometry A 69:563–572

    Article  PubMed  Google Scholar 

  27. Danuser G (1999) Photogrammetric calibration of a stereo light microscope. J Microsc 193:62–83

    Article  PubMed  Google Scholar 

  28. Bruce MA, Butte MJ (2013) Real-time GPU-based 3D deconvolution. Opt Express 21:4766–4773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ridley AJ (2011) Life at the leading edge. Cell 145:1012–1022

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants T32GM007491 to VM, GM071828 to DC, and GM093121 to LH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Louis Hodgson Ph.D. or Dianne Cox Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Miskolci, V., Hodgson, L., Cox, D. (2017). Using Fluorescence Resonance Energy Transfer-Based Biosensors to Probe Rho GTPase Activation During Phagocytosis. In: Botelho, R. (eds) Phagocytosis and Phagosomes. Methods in Molecular Biology, vol 1519. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6581-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6581-6_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6579-3

  • Online ISBN: 978-1-4939-6581-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics