Skip to main content

CRISPR/Cas-Mediated Knockin in Human Pluripotent Stem Cells

  • Protocol
  • First Online:
Cancer Gene Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1513))

Abstract

Fluorescent reporter and epitope-tagged human pluripotent stem cells (hPSCs) greatly facilitate studies on the pluripotency and differentiation characteristics of these cells. Unfortunately traditional procedures to generate such lines are hampered by a low targeting efficiency that necessitates a lengthy process of selection followed by the removal of the selection cassette. Here we describe a procedure to generate fluorescent reporter and epitope tagged hPSCs in an efficient one-step process using the CRISPR/Cas technology. Although the method described uses our recently developed iCRISPR platform, the protocols can be adapted for general use with CRISPR/Cas or other engineered nucleases. The transfection procedures described could also be used for additional applications, such as overexpression or lineage tracing studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tabar V, Studer L (2014) Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat Rev Genet 15:82–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhu Z, Huangfu D (2013) Human pluripotent stem cells: an emerging model in developmental biology. Development 140:705–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chia NY, Chan YS, Feng B et al (2010) A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity. Nature 468:316–320

    Article  CAS  PubMed  Google Scholar 

  4. Theunissen TW, Powell BE, Wang H et al (2014) Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15:471–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eiges R, Schuldiner M, Drukker M et al (2001) Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells. Curr Biol 11:514–518

    Article  CAS  PubMed  Google Scholar 

  6. Zwaka TP, Thomson JA (2003) Homologous recombination in human embryonic stem cells. Nat Biotechnol 21:319–321

    Article  CAS  PubMed  Google Scholar 

  7. Davis RP, Costa M, Grandela C et al (2008) A protocol for removal of antibiotic resistance cassettes from human embryonic stem cells genetically modified by homologous recombination or transgenesis. Nat Protoc 3:1550–1558

    Article  CAS  PubMed  Google Scholar 

  8. Zhu Z, Verma N, Gonzalez F, Shi ZD, Huangfu D (2015) A CRISPR/Cas-mediated selection-free knockin strategy in human embryonic stem cells. Stem Cell Rep 4:1103–1111

    Article  CAS  Google Scholar 

  9. Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55

    Article  CAS  PubMed  Google Scholar 

  10. Ran FA, Hsu PD, Wright J et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Urnov FD, Rebar EJ, Holmes MC et al (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  PubMed  Google Scholar 

  12. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  Google Scholar 

  13. Jinek M, East A, Cheng A et al (2013) RNA-programmed genome editing in human cells. Elife 2:e00471

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cho SW, Kim S, Kim JM, Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31:230–232

    Article  CAS  PubMed  Google Scholar 

  15. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Byrne SM, Ortiz L, Mali P et al (2015) Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res 43:e21

    Article  PubMed  Google Scholar 

  18. Hou Z, Zhang Y, Propson NE et al (2013) Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A 110:15644–15649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Merkert S, Wunderlich S, Bednarski C et al (2014) Efficient designer nuclease-based homologous recombination enables direct PCR screening for footprintless targeted human pluripotent stem cells. Stem Cell Rep 2:107–118

    Article  CAS  Google Scholar 

  20. Merkle FT, Neuhausser WM, Santos D et al (2015) Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus. Cell Rep 11:875–883

    Article  CAS  PubMed  Google Scholar 

  21. Gonzalez F, Zhu Z, Shi ZD et al (2014) An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell 15:215–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu Z, Gonzalez F, Huangfu D (2014) The iCRISPR platform for rapid genome editing in human pluripotent stem cells. Methods Enzymol 546:215–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen G, Gulbranson DR, Hou Z et al (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8:424–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ludwig TE, Bergendahl V, Levenstein ME et al (2006) Feeder-independent culture of human embryonic stem cells. Nat Methods 3:637–646

    Article  CAS  PubMed  Google Scholar 

  25. Veres A, Gosis BS, Ding Q et al (2014) Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell 15:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Borjigin J, Nathans J (1994) Insertional mutagenesis as a probe of rhodopsin's topography, stability, and activity. J Biol Chem 269:14715–14722

    CAS  PubMed  Google Scholar 

  27. Grote E, Hao JC, Bennett MK, Kelly RB (1995) A targeting signal in VAMP regulating transport to synaptic vesicles. Cell 81:581–589

    Article  CAS  PubMed  Google Scholar 

  28. Nieminen M, Tuuri T, Savilahti H (2010) Genetic recombination pathways and their application for genome modification of human embryonic stem cells. Exp Cell Res 316:2578–2586

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Nipun Verma and Zengrong Zhu contributed equally to this work. Our work related to this publication was funded, in part, by NIH (R01DK096239) and NYSTEM (C029156). Z.Z. was supported by the New York State Stem Cell Science (NYSTEM) fellowship from the Center for Stem Cell Biology (CSCB) of the Sloan Kettering Institute. N.V. was supported by the Howard Hughes Medical Institute (HHMI) Medical Research and the Tri-Institutional Weill Cornell/ Rockefeller/ Sloan Kettering MD-PhD program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danwei Huangfu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Verma, N., Zhu, Z., Huangfu, D. (2017). CRISPR/Cas-Mediated Knockin in Human Pluripotent Stem Cells. In: Kasid, U., Clarke, R. (eds) Cancer Gene Networks. Methods in Molecular Biology, vol 1513. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6539-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6539-7_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6537-3

  • Online ISBN: 978-1-4939-6539-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics