Skip to main content

ANXA7-GTPase as Tumor Suppressor: Mechanisms and Therapeutic Opportunities

  • Protocol
  • First Online:
Cancer Gene Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1513))

Abstract

Chromosomal abnormalities, including homozygous deletions and loss of heterozygosity at 10q, are commonly observed in most human tumors, including prostate, breast, and kidney cancers. The ANXA7-GTPase is a tumor suppressor, which is frequently inactivated by genomic alterations at 10q21. In the last few years, considerable amounts of data have accumulated describing inactivation of ANXA7-GTPase in a variety of human malignancies and demonstrating the tumor suppressor potential of ANXA7-GTPase. ANXA7-GTPase contains a calcium binding domain that classifies it as a member of the annexin family. The cancer-specific expression of ANXA7-GTPase, coupled with its importance in regulating cell death, cell motility, and invasion, makes it a useful diagnostic marker of cancer and a potential target for cancer treatment. Recently, emerging evidence suggests that ANXA7-GTPase is a critical factor associated with the metastatic state of several cancers and can be used as a risk biomarker for HER2 negative breast cancer patients. Cross talk between ANXA7, PTEN, and EGFR leads to constitutive activation of PI3K-AKT signaling, a central pathway of tumor cell survival and proliferation. This review focuses on the recent progress in understanding the tumor suppressor functions of ANXA7-GTPase emphasizing the role of this gene in Ca2+ metabolism, and exploring opportunities for function as an example of a calcium binding GTPase acting as a tumor suppressor and opportunities for ANXA7-GTPase gene cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shen WP, Young RF, Walter BN et al (1990) Molecular analysis of a myxoid chondrosarcoma with rearrangements of chromosomes 10 and 22. Cancer Genet Cytogenet 45:207–215

    Article  CAS  PubMed  Google Scholar 

  2. Jenkins RB, Hay ID, Herath JF et al (1990) Frequent occurrence of cytogenetic abnormalities in sporadic nonmedullary thyroid carcinoma. Cancer 66:1213–1220

    Article  CAS  PubMed  Google Scholar 

  3. Morita R, Saito S, Ishikawa J et al (1991) Common regions of deletion on chromosomes 5q, 6q and 10q in renal cell carcinoma. Cancer Res 51:5817–5820

    CAS  PubMed  Google Scholar 

  4. Shah NK, Wagner J, Santos G, Griffin CA (1992) Karyotype at relapse following allogeneic bone marrow transplantation for chronic myelogenous leukemia. Cancer Genet Cytogenet 61:183–192

    Article  CAS  PubMed  Google Scholar 

  5. Oberstrass J, Ring GU, Vogeley KT et al (1994) Allelieuntersuchungen auf Chomosom 10q21-26 in malignen Gliomen. Verh Dtsch Ges Pathol 78:413–417

    CAS  PubMed  Google Scholar 

  6. Steck PA, Lignon AH, Cheong P et al (1995) Two tumor suppressive loci on chromosome 10 involved in human glioblastoma. Genes Chromosomes Cancer 12:255–261

    Article  CAS  PubMed  Google Scholar 

  7. Solic N, Collins JE, Richter A et al (1995) Two newly established cell lines derived from the same colonic adenocarcinoma exhibit differences in EGF-receptor ligand and adhesion molecule expression. Int J Cancer 62:48–57

    Article  CAS  PubMed  Google Scholar 

  8. Petersen S, Wolf G, Bockmuhl U et al (1998) Allelic loss on chromosome 10q in human lung cancer: association with tumour progression and metastatic phenotype. Br J Cancer 77:270–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Piao Z, Park C, Park JH, Kim H (1998) Allotype analysis of hepatocellular carcinoma. Int J Cancer 75:29–33

    Article  CAS  PubMed  Google Scholar 

  10. Lacombe L, Orlow I, Reuter VE et al (1996) Microsatellite instability and deletion analysis of chromosome 10 in human prostate cancer. Int J Cancer 69:110–113

    Article  CAS  PubMed  Google Scholar 

  11. Li J, Yen C, Liaw D et al (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947

    Article  CAS  PubMed  Google Scholar 

  12. Maier D, Zhang Z, Taylor E et al (1998) Somatic deletion mapping on chromosome 10 and sequence analysis of PTEN/MMAC1 point to the 10q25-26 region as the primary target in low grade and high grade gliomas. Oncogene 16:3331–3335

    Article  CAS  PubMed  Google Scholar 

  13. Srivastava M, Bubendorf L, Nolan L et al (2001) ANXA7, a candidate tumor-suppressor gene for prostate cancer. Proc Natl Acad Sci U S A 98:4575–4578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Leighton X, Srikantan V, Pollard HB et al (2004) Significant allelic loss of ANXA7 region (10q21) in hormone receptor negative breast carcinomas. Can Lett 210:239–244

    Article  CAS  Google Scholar 

  15. Klee CB (1988) Ca2+-dependent phospholipid- (and membrane-)binding proteins. Biochemistry 27:6645–6653

    Article  CAS  PubMed  Google Scholar 

  16. Raynal P, Pollard HB (1994) Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium-and phospholipid-binding proteins. BBA Biomembranes 1197:63–93

    CAS  PubMed  Google Scholar 

  17. Smith PD, Moss SE (1994) Structural evolution of the annexin supergene family. Trends Genet 10:241–246

    Article  CAS  PubMed  Google Scholar 

  18. Flower RJ, Rothwell NJ (1994) Lipocortin-1: cellular mechanisms and clinical relevance. Trends Pharmacol Sci 15:71–76

    Article  CAS  PubMed  Google Scholar 

  19. McKanna JA (1995) Lipocortin 1 in apoptosis: mammary regression. Anat Rec 242:1–10

    Article  CAS  PubMed  Google Scholar 

  20. Rothhut B (1997) Participation of annexins in protein phosphorylation. Cell Mol Life Sci 53:522–526

    Article  CAS  PubMed  Google Scholar 

  21. Gerke V, Moss SE (2002) Annexins: from structure to function. Physiol Rev 82:331–371

    Article  CAS  PubMed  Google Scholar 

  22. Pollard HB, Rojas E (1988) Calcium acivated ANXA7 forms highly selective, voltage-gated channels in phosphatidylserine bilayer membranes. Proc Natl Acad Sci U S A 85:2974–2978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kubista H, Hawkins TE, Patel DR et al (1999) Annexin 5 mediates a peroxide-induced Ca(2+) influx in B cells. Curr Biol 9:1403–1406

    Article  CAS  PubMed  Google Scholar 

  24. Paweletz CP, Ornstein DK, Roth MJ et al (2000) Loss of annexin 1 correlates with early onset of tumorigenesis in esophageal and prostate carcinoma. Cancer Res 60:6293–6297

    CAS  PubMed  Google Scholar 

  25. Chetcuti A, Margan SH, Russell P et al (2001) Loss of annexin II heavy and light chains in prostate cancer and its precursors. Cancer Res 61:6331–6334

    CAS  PubMed  Google Scholar 

  26. Kang JS, Calvo BF, Maygarden SJ et al (2002) Dysregulation of annexin I protein expression in high-grade prostatic intraepithelial neoplasia and prostate cancer. Clin Cancer Res 8:117–123

    CAS  PubMed  Google Scholar 

  27. Xin W, Rhodes DR, Ingold C et al (2003) Dysregulation of the annexin family protein family is associated with prostate cancer progression. Am J Pathol 162:255–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Smitherman AB, Mohler JL, Maygarden SJ, Ornstein DK (2004) Expression of annexin I, II and VII proteins in androgen stimulated and recurrent prostate cancer. J Urol 171:916–920

    Article  CAS  PubMed  Google Scholar 

  29. Yadav AK, Renfrow JJ, Scholtens DM (2009) Monosomy of chromosome 10 associated with dysregulation of epidermal growth factor signaling in glioblastomas. JAMA 302:276–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bredel M, Scholtens DM, Harsh GR (2009) A network model of a cooperative genetic landscape in brain tumors. JAMA 302:261–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kataoka TR, Ito A, Asada H (2000) Annexin VII as a novel marker for invasive phenotype of malignant melanoma. Jpn J Cancer Res 91:75–83

    Article  CAS  PubMed  Google Scholar 

  32. Shirvan A, Srivastava M, Wang MG et al (1994) Divergent Structure of the human ANXA7 (annexin VII) gene and assignment to chromosome 10. Biochemistry 33:6888–6901

    Article  CAS  PubMed  Google Scholar 

  33. Zhang-Keck Z-Y, Burns AL, Pollard HB (1993) Mouse ANXA7 (annexin VII) polymorphisms and phylogenetic comparison with other ANXA7s. Biochem J 289:735–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang-Keck Z-Y, Srivastava M, Kozak CA et al (1994) Genomic organization and chromosomal localization of the mouse ANXA7 (annexin VII) gene. Biochem J 301:835–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Srivastava M, Zhang-Keck ZY, Caohuy H et al (1996) Novel isoforms of ANXA7 in Xenopus laevis: multiple tandem PGQM repeats distinguish mRNA’s in specific adult tissues and embryonic stages. Biochem J 316:729–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Doring V, Schleicher M, Noegel AA (1991) Dictyostelium annexin VII (ANXA7). J Biol Chem 266:17509–17515

    CAS  PubMed  Google Scholar 

  37. Gerke V (1991) Identification of a homologue for annexin VII (synexin) in Dictyostelium discoideum. J Biol Chem 266:1697–1700

    CAS  PubMed  Google Scholar 

  38. Sun M-Z, Liu S, Tang J (2009) Targeting annexin A7 in hepatocarcinoma lymphatic metastasis. Chin J Lung Cancer 12:633–634

    Google Scholar 

  39. Gong X, Tang J, Geng X (2009) Expression and significance of Annex in A7 in gastric cancer and lymphatic metastasis. Int J Pathol Clin Med 29:369–373

    CAS  Google Scholar 

  40. Yang M, Liang Q (2011) Study the relationship between the expression of Annexin A7 and CT of nasopharyngeal carcinoma. J Chin Clin Med Imaging 22:6–9

    CAS  Google Scholar 

  41. Jimenez CR, Knol JC, Meijer GA (2010) Proteomics of colorectal cancer: overview of discovery studies and identification of commonly identified cancer-associated proteins and candidate CRC serum markers. J Proteomics 73:1873–1895

    Article  CAS  PubMed  Google Scholar 

  42. Srivastava M, Torosyan Y, Raffeld M (2007) ANXA7 expression represents hormonerelevant tumor suppression in different cancers. Int J Cancer 121:2628–2636

    Article  CAS  PubMed  Google Scholar 

  43. Guo C, Liu S, Greenway F, Sun M-Z (2013) Potential role of annexin A7 in cancers. Clin Chim Acta 423:83–89

    Article  CAS  PubMed  Google Scholar 

  44. Srivastava M, Bubendorf L, Raffeld M et al (2004) Prognostic impact of ANXA7-GTPase in metastatic and HER2 negative breast cancer patients. Clin Cancer Res 7:2344–2350

    Article  Google Scholar 

  45. Srivastava M, Bubendorf L, Nolan L et al (2001) ANXA7 as a biomarker in prostate and breast cancer progression. Dis Markers 17:115–120

    Article  CAS  PubMed  Google Scholar 

  46. Bubendorf L, Sauter G, Moch H et al (1996) Prognostic significance of Bcl-2 in clinically localized prostate cancer. Am J Pathol 148:1557–1565

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Silvestrini R, Veneroni S, Daidone MG et al (1994) The Bcl-2 protein: a prognostic indicator strongly related to p53 protein in lymph node-negative breast cancer patients. J Natl Cancer Inst 86:499–504

    Article  CAS  PubMed  Google Scholar 

  48. Villar E, Redondo M, Rodrigo I et al (2001) Bcl-2 expression and apoptosis in primary and metastatic breast carcinomas. Tumour Biol 22:137–145

    Article  CAS  PubMed  Google Scholar 

  49. Bonkhoff H, Remberger K (1996) Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate 28:98–106

    Article  CAS  PubMed  Google Scholar 

  50. Li P, Barraclough R, Fernig DG et al (1998) Stem cells in breast epithelia. Int J Exp Pathol 79:193–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Feuerhake F, Sigg W, Höfter EA et al (2000) Immunohistochemical analysis of Bcl-2 and Bax expression in relation to cell turnover and epithelial differentiation markers in the non-lactating human mammary gland epithelium. Cell Tissue Res 299:47–58

    Article  CAS  PubMed  Google Scholar 

  52. Srivastava M, Montagna C, Leighton X et al (2003) Haploinsufficiency of ANXA7 tumor suppressor gene and consequent genomic instability promotes tumorigenesis in the ANXA7(+/−) mouse. Proc Natl Acad Sci U S A 100:14287–14292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Srivastava M, Atwater I, Glasman M et al (1999) Defects in IP3 receptor expression, Ca2+-signaling and insulin secretion in the ANXA7 (+/−) knockout mouse. Proc Natl Acad Sci U S A 96:13783–13788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Srivastava M, Kumar P, Leighton X et al (2002) Influence of the Anx7 +/− knockout mutation and fasting stress on the genomics of the mouse adrenal gland. Ann N Y Acad Sci 971:53–60

    Article  CAS  PubMed  Google Scholar 

  55. Kim T, Tao-Cheng JH, Eiden LE, Loh YP (2002) Large dense-core secretory granule biogenesis is under the control of chromogranin A in neuroendocrine cells. Ann N Y Acad Sci 971:323–331

    Article  CAS  PubMed  Google Scholar 

  56. Goping G, Pollard HB, Srivastava M, Leapman R (2003) Mapping protein expression in mouse pancreatic islets by immunolabeling and electron energy loss spectrum-imaging. Microsc Res Tech 61:448–456

    Article  CAS  PubMed  Google Scholar 

  57. Srivastava M, Eidelman O, Leighton X et al (2002) ANXA7 is required for nutritional control of gene expression in mouse pancreatic islets of Langerhans. Mol Med 8:781–797

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Furuya Y, Lundmo P, Short AD et al (1994) The role of calcium, pH, and cell proliferation in the programmed (apoptotic) death of androgen independent prostatic cancer cells induced by thapsigargin. Cancer Res 54: 6167–6175

    CAS  PubMed  Google Scholar 

  59. Kyprianou N, Bains AK, Jacobs SC (1994) Induction of apoptosis in androgen-independent human prostate cancer cells undergoing thymineless death. Prostate 25: 66–75

    Article  CAS  PubMed  Google Scholar 

  60. Wertz IE, Dixit VM (2000) Characterization of calcium release-activated apoptosis of LnCaP prostate cancer cells. J Biol Chem 275:11470–11477

    Article  CAS  PubMed  Google Scholar 

  61. Kass GE, Orrenius S (1999) Calcium signaling and cytotoxicity. Environ Health Perspect 107:25–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Scoltock AB, Bortner CD, St J, Bird G et al (2000) A selective requirement for elevated calcium in DNA degradation, but not early events in anti-Fas-induced apoptosis. J Biol Chem 275:30586–30596

    Article  CAS  PubMed  Google Scholar 

  63. Lin XS, Denmeade SR, Cisek L, Isaacsm JT (1997) Mechanism and role of growth arrest in programmed (apoptotic) death of prostatic cancer cells induced by thapsigargin. Prostate 33:201–207

    Article  CAS  PubMed  Google Scholar 

  64. Tombal B, Weeraratna AT, Denmeade SR, Isaacs JT (2000) Thapsigargin induces a calmodulin/calcineurin-dependent apoptotic cascade responsible for the death of prostatic cancer cells. Prostate 43:303–317

    Article  CAS  PubMed  Google Scholar 

  65. Furuya Y, Ohta S, Ito H (1997) Apoptosis of androgen-independent mammary and prostate cell lines induced by topoisomerase inhibitors: common pathway of gene regulation. Anticancer Res 17:2089–2093

    CAS  PubMed  Google Scholar 

  66. Szalai G, Krishnamurthy R, Hajnóczky G (1999) Apoptosis driven by IP (3)-linked mitochondrial calcium signals. EMBO J 18:6349–6361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meera Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Leighton, X., Eidelman, O., Jozwik, C., Pollard, H.B., Srivastava, M. (2017). ANXA7-GTPase as Tumor Suppressor: Mechanisms and Therapeutic Opportunities. In: Kasid, U., Clarke, R. (eds) Cancer Gene Networks. Methods in Molecular Biology, vol 1513. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6539-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6539-7_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6537-3

  • Online ISBN: 978-1-4939-6539-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics