Skip to main content

Purification of 26S Proteasomes and Their Subcomplexes from Plants

  • Protocol
  • First Online:
Isolation of Plant Organelles and Structures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1511))

Abstract

The 26S proteasome is a highly dynamic, multisubunit, ATP-dependent protease that plays a central role in cellular housekeeping and many aspects of plant growth and development by degrading aberrant polypeptides and key cellular regulators that are first modified by ubiquitin. Although the 26S proteasome was originally enriched from plants over 30 years ago, only recently have significant advances been made in our ability to isolate and study the plant particle. Here, we describe two robust methods for purifying the 26S proteasome and its subcomplexes from Arabidopsis thaliana; one that involves conventional chromatography techniques to isolate the complex from wild-type plants, and another that employs the genetic replacement of individual subunits with epitope-tagged variants combined with affinity purification. In addition to these purification protocols, we describe methods commonly used to analyze the activity and composition of the complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vierstra RD (1993) Protein degradation in plants. Annu Rev Plant Physiol Plant Mol Biol 44:385–410

    Article  CAS  Google Scholar 

  2. Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10:385–397

    Article  CAS  PubMed  Google Scholar 

  3. Smalle JA, Vierstra RD (2004) The ubiquitin-26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590

    Article  CAS  PubMed  Google Scholar 

  4. Nelson CJ, Li L, Millar AH (2014) Quantitative analysis of protein turnover in plants. Proteomics 14:579–592

    Article  CAS  PubMed  Google Scholar 

  5. Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bhattacharyya S, Yu H, Mim C et al (2014) Regulated protein turnover: snapshots of the proteasome in action. Nat Rev Mol Cell Biol 15:122–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Etlinger JD, Goldberg AL (1977) A soluble, ATP-dependent proteolytic system responsible for degradation of abnormal proteins in reticulocytes. Proc Natl Acad Sci U S A 74:54–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ciechanover A, Elias S, Heller H et al (1980) Characterization of the heat-stable polypeptide of the ATP-dependent proteolytic system from reticulocytes. J Biol Chem 255:7525–7528

    CAS  PubMed  Google Scholar 

  9. Ciechanover A, Heller H, Elias S et al (1980) ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proc Natl Acad Sci U S A 77:1365–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hershko A, Ciechanover A, Heller H et al (1980) Proposed role of ATP in protein breakdown: conjugation of proteins with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc Natl Acad Sci U S A 77:1783–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wilkinson KD, Urban MK, Haas AL (1980) Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes. J Biol Chem 255:7529–7532

    CAS  PubMed  Google Scholar 

  12. Ciechanover A, Finley D, Varshavsky A (1984) Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell 37:57–66

    Article  CAS  PubMed  Google Scholar 

  13. Finley D, Ciechanover A, Varshavsky A (1984) Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37:43–55

    Article  CAS  PubMed  Google Scholar 

  14. Finley D, Ozkaynak E, Varshavsky A (1987) The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48:1035–1046

    Article  CAS  PubMed  Google Scholar 

  15. Shanklin J, Jabben M, Vierstra RD (1987) Red light-induced formation of ubiquitin-phytochrome conjugates: identification of possible intermediates of phytochrome degradation. Proc Natl Acad Sci U S A 84:359–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Glotzer M, Murray AW, Kirschner MW (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349:132–138

    Article  CAS  PubMed  Google Scholar 

  17. Hochstrasser M, Ellison MJ, Chau V et al (1991) The short-lived MATα2 transcriptional regulator is ubiquitinated in vivo. Proc Natl Acad Sci U S A 88:4606–4610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Berndsen CE, Wolberger C (2014) New insights into ubiquitin E3 ligase mechanisms. Nat Struct Mol Biol 21:301–307

    Article  CAS  PubMed  Google Scholar 

  19. Hua Z, Vierstra RD (2011) The cullin-RING ubiquitin-protein ligases. Annu Rev Plant Biol 62:299–334

    Article  CAS  PubMed  Google Scholar 

  20. Hua Z, Pool JE, Schmitz RJ et al (2013) Epigenomic programming contributes to the genomic drift evolution of the F-Box protein superfamily in Arabidopsis. Proc Natl Acad Sci U S A 110:16927–16932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim DY, Scalf M, Smith LM et al (2013) Advanced proteomic analyses yield a deep catalog of ubiquitylation targets in Arabidopsis. Plant Cell 25:1523–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lander GC, Estrin E, Matyskiela ME et al (2012) Complete subunit architecture of the proteasome regulatory particle. Nature 482:186–191

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lasker K, Förster F, Bohn S et al (2012) Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci U S A 109:1380–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Unverdorben P, Beck F, Śledź P et al (2014) Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome. Proc Natl Acad Sci U S A 111:5544–5549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Arendt CS, Hochstrasser M (1997) Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active site formation. Proc Natl Acad Sci U S A 94:7156–7161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Heinemeyer W, Fischer M, Krimmer T et al (1997) The active sites of the eukaryotic 20S proteasome and their involvement in subunit precursor processing. J Biol Chem 272:25200–25209

    Article  CAS  PubMed  Google Scholar 

  27. Groll M, Heinemeyer W, Jäger S et al (1999) The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study. Proc Natl Acad Sci U S A 96:10976–10983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Groll M, Bajorek M, Köhler A et al (2000) A gated channel into the proteasome core particle. Nat Struct Biol 7:1062–1067

    Article  CAS  PubMed  Google Scholar 

  29. Ruschak AM, Religa TL, Breuer S et al (2010) The proteasome antechamber maintains substrates in an unfolded state. Nature 467:868–871

    Article  CAS  PubMed  Google Scholar 

  30. Glickman MH, Rubin DM, Fried VA et al (1998) The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol Cell Biol 18:3149–3162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Book AJ, Gladman NP, Lee SS et al (2010) Affinity purification of the Arabidopsis 26S proteasome reveals a diverse array of plant proteolytic complexes. J Biol Chem 285:25554–25569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Russell JD, Scalf M, Book AJ et al (2013) Characterization and quantification of intact 26S proteasome proteins by real-time measurement of intrinsic fluorescence prior to top-down mass spectrometry. PLoS One 8:e58157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Glickman MH, Rubin DM, Coux O et al (1998) A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94:615–623

    Article  CAS  PubMed  Google Scholar 

  34. Köhler A, Cascio P, Leggett DS et al (2001) The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol Cell 7:1143–1152

    Article  PubMed  Google Scholar 

  35. Smith DM, Kafri G, Cheng Y et al (2005) ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol Cell 20:687–698

    Article  CAS  PubMed  Google Scholar 

  36. Rabl J, Smith DM, Yu Y et al (2008) Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol Cell 30:360–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Beck F, Unverdorben P, Bohn S et al (2012) Near-atomic resolution structural model of the yeast 26S proteasome. Proc Natl Acad Sci U S A 109:14870–14875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pathare GR, Nagy I, Bohn S et al (2012) The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory sub-complexes together. Proc Natl Acad Sci U S A 109:149–154

    Article  CAS  PubMed  Google Scholar 

  39. Verma R, Aravind L, Oania R et al (2002) Role of the Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298:611–615

    Article  CAS  PubMed  Google Scholar 

  40. Worden EJ, Padovani C, Martin A (2014) Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation. Nat Struct Mol Biol 21:220–227

    Article  CAS  PubMed  Google Scholar 

  41. Hanna J, Hathaway NA, Tone Y et al (2006) The deubiquitinating enzyme Ubp6 functions non-catalytically to delay proteasomal degradation. Cell 127:99–111

    Article  CAS  PubMed  Google Scholar 

  42. Sakata E, Stengel F, Fukunaga K et al (2011) The catalytic activity of Ubp6 enhances maturation of the proteasomal regulatory particle. Mol Cell 42:637–649

    Article  CAS  PubMed  Google Scholar 

  43. Van Nocker S, Deveraux Q, Rechsteiner M et al (1996) The Arabidopsis MBP1 gene encodes a conserved ubiquitin recognition component of the 26S proteasome. Proc Natl Acad Sci U S A 93:856–860

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fatimababy AS, Lin YL, Usharani R et al (2010) Cross-species divergence of the major recognition pathways of ubiquitylated substrates for ubiquitin/26S proteasome-mediated proteolysis. FEBS J 277:796–816

    Article  CAS  PubMed  Google Scholar 

  45. Lin YL, Sung SC, Tsai HL et al (2011) The defective proteasome, not substrate recognition function, is responsible for the null phenotypes of the Arabidopsis proteasome subunit RPN10. Plant Cell 23:2754–2773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sakata E, Bohn S, Mihalache O et al (2012) Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryo-microscopy. Proc Natl Acad Sci U S A 109:1479–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Paraskevopoulos K, Kriegenburg F, Tatham MH et al (2014) Dss1 is a 26S proteasome ubiquitin receptor. Mol Cell 56:453–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Elsasser S, Gali RR, Schwickart M et al (2002) Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat Cell Biol 4:725–730

    Article  CAS  PubMed  Google Scholar 

  49. Fu H, Sadis S, Rubin DM et al (1998) Multi-ubiquitin chain binding and protein degradation are mediated by distinct domains within the 26S proteasome subunit MCB1. J Biol Chem 273:1970–1981

    Article  CAS  PubMed  Google Scholar 

  50. Husnjak K, Elsasser S, Zhang N et al (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453:481–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schreiner P, Chen X, Husnjak K et al (2008) Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 453:548–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Farmer LM, Book AJ, Lee KH et al (2010) The RAD23 family provides an essential connection between the 26S proteasome and ubiquitylated proteins in Arabidopsis. Plant Cell 22:124–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Husnjak K, Dikic I (2012) Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem 81:291–322

    Article  CAS  PubMed  Google Scholar 

  54. Xie Y, Varshavsky A (2000) Physical association of ubiqutin ligases and the 26S proteasome. Proc Natl Acad Sci U S A 97:2497–2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Leggett DS, Hanna J, Borodovsky A et al (2002) Multiple associated proteins regulate proteasome structure and function. Mol Cell 10:495–507

    Article  CAS  PubMed  Google Scholar 

  56. Besche HC, Sha Z, Kukushkin NV et al (2014) Auto-ubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates. EMBO J 33:1159–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Le Tallec B, Barrault MB, Courbeyrette R et al (2007) 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and mammals. Mol Cell 27:660–674

    Article  PubMed  Google Scholar 

  58. Kusmierczyk AR, Kunjappu MJ, Funakoshi M et al (2008) A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nat Struct Mol Biol 15:237–244

    Article  CAS  PubMed  Google Scholar 

  59. Tomko RJ, Hochstrasser M (2013) Molecular architecture and assembly of the eukaryotic proteasome. Annu Rev Biochem 82:415–445

    Article  CAS  PubMed  Google Scholar 

  60. Funakoshi M, Tomko RJ, Kobayashi H et al (2009) Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell 137:887–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Roelofs J, Park S, Haas W et al (2009) Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature 459:861–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Saeki Y, Toh-e A, Kudo T et al (2009) Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell 137:900–913

    Article  CAS  PubMed  Google Scholar 

  63. Ramos PC, Höckendorff J, Johnson ES et al (1998) Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell 92:489–499

    Article  CAS  PubMed  Google Scholar 

  64. Lehmann A, Niewienda A, Jechow K et al (2010) Ecm29 fulfils quality control functions in proteasome assembly. Mol Cell 38:879–888

    Article  CAS  PubMed  Google Scholar 

  65. Schmidt M, Haas W, Crosas B et al (2005) The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nat Struct Mol Biol 12:294–303

    Article  CAS  PubMed  Google Scholar 

  66. Barthelme D, Sauer RT (2012) Identification of the Cdc48-20S proteasome as an ancient AAA proteolytic machine. Science 337:843–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sadre-Bazzaz K, Whitby FG, Robinson H et al (2010) Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening. Mol Cell 37:728–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dange T, Smith DM, Noy T et al (2011) The Blm10 protein promotes proteasomal substrate turnover by an active gating mechanism. J Biol Chem 286:42830–42839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Weberruss MH, Savulescu AF, Jando J et al (2013) Blm10 facilitates nuclear import of proteasome core particles. EMBO J 32:2697–2707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schmid HP, Akhayat O, Martins C et al (1984) The prosome: a ubiquitous morphologically distinct RNP particle associated with repressed mRNPs and containing specific scRNA and a characteristic set of proteins. EMBO J 3:29–34

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kremp A, Schliephacke M, Kull U et al (1986) Prosomes exist in plant cells too. Exp Cell Res 166:553–557

    Article  CAS  PubMed  Google Scholar 

  72. Baumeister W, Dahlmann B, Hegerl R et al (1988) Electron microscopy and image analysis of the multi-catalytic proteinase. FEBS Lett 241:239–245

    Article  CAS  PubMed  Google Scholar 

  73. Arrigo AP, Tanaka K, Goldberg AL et al (1988) Identity of the 19S prosome particle with the large multi-functional protease complex of mammalian cells (the proteasome). Nature 331:192–194

    Article  CAS  PubMed  Google Scholar 

  74. Schliephacke M, Kremp A, Schmid HP et al (1991) Prosomes (proteasomes) of higher plants. Eur J Cell Biol 55:114–121

    CAS  PubMed  Google Scholar 

  75. Ozaki M, Fujinami K, Tanaka K et al (1992) Purification and initial characterization of the proteasome from the higher plant Spinacia oleracea. J Biol Chem 267:21678–21684

    CAS  PubMed  Google Scholar 

  76. Skoda B, Malek L (1992) Dry pea seed proteasome: purification and enzymatic activities. Plant Physiol 99:1515–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Murray PF, Giordano CV, Passeron S et al (1997) Purification and characterization of the 20S proteasome from wheat leaves. Plant Sci 125:127–136

    Article  CAS  Google Scholar 

  78. Hough R, Pratt G, Rechsteiner M (1986) Ubiquitin-lysozyme conjugates: identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates. J Biol Chem 261:2400–2408

    CAS  PubMed  Google Scholar 

  79. Hough R, Rechsteiner M (1986) Ubiquitin-lysozyme conjugates: purification and susceptibility to proteolysis. J Biol Chem 261:2391–2399

    CAS  PubMed  Google Scholar 

  80. Hough R, Pratt G, Rechsteiner M (1987) Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J Biol Chem 262:8303–8313

    CAS  PubMed  Google Scholar 

  81. Waxman L, Fagan JM, Goldberg AL (1987) Demonstration of two distinct high molecular weight proteases in rabbit reticulocytes, one of which degrades ubiquitin conjugates. J Biol Chem 262:2451–2457

    CAS  PubMed  Google Scholar 

  82. Ganoth D, Leshinsky E, Eytan E et al (1988) A multi-component system that degrades proteins conjugated to ubiquitin: resolution of factors and evidence for ATP-dependent complex formation. J Biol Chem 263:12412–12419

    CAS  PubMed  Google Scholar 

  83. Armon T, Ganoth D, Hershko A (1990) Assembly of the 26S complex that degrades proteins ligated to ubiquitin is accompanied by the formation of ATPase activity. J Biol Chem 265:20723–20726

    CAS  PubMed  Google Scholar 

  84. Peters JM, Harris JR, Kleinschmidt JA (1991) Ultrastructure of the approximately 26S complex containing the approximately 20S cylinder particle (multi-catalytic proteinase/proteasome). Eur J Cell Biol 56:422–432

    CAS  PubMed  Google Scholar 

  85. Yoshimura T, Kameyama K, Takagi T et al (1993) Molecular characterization of the 26S proteasome complex from rat liver. J Struct Biol 111:200–211

    Article  CAS  PubMed  Google Scholar 

  86. Vierstra RD, Sullivan ML (1988) Hemin inhibits ubiquitin-dependent proteolysis in both a higher plant and yeast. Biochemistry 27:3290–3295

    Article  CAS  PubMed  Google Scholar 

  87. Hatfield PM, Vierstra RD (1989) Ubiquitin-dependent proteolytic pathway in wheat germ: isolation of multiple forms of the E1 ubiquitin-activating enzyme. Biochemistry 28:735–742

    Article  CAS  Google Scholar 

  88. Fujinami K, Tanahashi N, Tanaka K et al (1994) Purification and characterization of the 26S proteasome from spinach leaves. J Biol Chem 269:25905–25910

    CAS  PubMed  Google Scholar 

  89. Yanagawa Y, Ohhashi A, Murakami Y et al (1999) Purification and characterization of the 26S proteasome from cultured rice (Oryza sativa) cells. Plant Sci 149:33–41

    Article  CAS  Google Scholar 

  90. Malik MN, Spivack WD, Sheikh AM et al (2004) The 26S proteasome in garlic (Allium sativum): purification and partial characterization. J Agric Food Chem 52:3350–3355

    Article  CAS  PubMed  Google Scholar 

  91. Woffenden BJ, Freeman TB, Beers EP (1998) Proteasome inhibitors prevent tracheary element differentiation in Zinnia mesophyll cell cultures. Plant Physiol 118:419–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yang P, Fu H, Walker JM et al (2004) Purification of the Arabidopsis 26S proteasome: biochemical and molecular analyses revealed the presence of multiple isoforms. J Biol Chem 279:6401–6413

    Article  CAS  PubMed  Google Scholar 

  93. Leggett DS, Glickman MH, Finley D (2005) Purification of proteasomes, proteasome sub-complexes, and proteasome-associated proteins from budding yeast. Methods Mol Biol 301:57–70

    CAS  PubMed  Google Scholar 

  94. Sun HH, Fukao Y, Ishida S et al (2013) Proteomic analysis reveals a highly heterogeneous proteasome composition and the post-translational regulation of peptidase activity under pathogen signaling in plants. J Proteome Res 12:5084–5095

    Article  CAS  PubMed  Google Scholar 

  95. Belhaj K, Chaparro-Garcia A, Kamoun S et al (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84

    Article  CAS  PubMed  Google Scholar 

  96. Feng Z, Mao Y, Xu N et al (2014) Multi-generation analysis reveals the inheritance, specificity and patterns of CRISPR/Cas9-induced gene modifications in Arabidopsis. Proc Natl Acad Sci U S A 111:4632–4637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  98. Fu H, Girod PA, Doelling JH et al (1999) Structural and functional analyses of the 26S proteasome subunits from plants. Mol Biol Rep 26:137–146

    Article  CAS  PubMed  Google Scholar 

  99. Kisselev AF, Goldberg A (2005) Monitoring activity and inhibition of 26S proteasomes with fluorogenic peptide substrates. Methods Enzymol 398:364–378

    Article  CAS  PubMed  Google Scholar 

  100. Richert S, Luche S, Chevallet M et al (2004) The mechanism of interference of silver staining with peptide mass spectrometry. Proteomics 4:909–916

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Peizhen Yang, Adam J. Book, and Joseph M. Walker for their extensive work on the initial development of these protocols. We also wish to thank Erin Gemperline for critical reading of the manuscript. This work, R.S.M. and D.C.G. were supported by the U.S. Department of Energy Office of Science; Office of Basic Energy Sciences; Chemical Sciences, Geosciences and Biosciences Division (grant number DE-FG02-88ER13968).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Vierstra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Marshall, R.S., Gemperline, D.C., Vierstra, R.D. (2017). Purification of 26S Proteasomes and Their Subcomplexes from Plants. In: Taylor, N., Millar, A. (eds) Isolation of Plant Organelles and Structures. Methods in Molecular Biology, vol 1511. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6533-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6533-5_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6531-1

  • Online ISBN: 978-1-4939-6533-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics