Skip to main content

In Silico Adjuvant Design and Validation

  • Protocol
  • First Online:
Vaccine Adjuvants

Abstract

Adjuvants are substances that boost the protective immune response to vaccine antigens. The majority of known adjuvants have been identified through the use of empirical approaches. Our aim was to identify novel adjuvants with well-defined cellular and molecular mechanisms by combining a knowledge of immunoregulatory mechanisms with an in silico approach. CD4+CD25+FoxP3+ regulatory T cells (Tregs) inhibit the protective immune responses to vaccines by suppressing the activation of antigen presenting cells such as dendritic cells (DCs). In this chapter, we describe the identification and functional validation of small molecule antagonists to CCR4, a chemokine receptor expressed on Tregs. The CCR4 binds the chemokines CCL22 and CCL17 that are produced in large amounts by activated innate cells including DCs. In silico identified small molecule CCR4 antagonists inhibited the migration of Tregs both in vitro and in vivo and when combined with vaccine antigens, significantly enhanced protective immune responses in experimental models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rappuoli R, Mandl CW, Black S, De Gregorio E (2011) Vaccines for the twenty-first century society. Nat Rev Immunol 11:865–872

    CAS  PubMed  Google Scholar 

  2. Aimanianda V, Haensler J, Lacroix-Desmazes S, Kaveri SV, Bayry J (2009) Novel cellular and molecular mechanisms of induction of immune responses by aluminum adjuvants. Trends Pharmacol Sci 30:287–295

    Article  CAS  PubMed  Google Scholar 

  3. Bayry J, Tchilian EZ, Davies MN, Forbes EK, Draper SJ et al (2008) In silico identified CCR4 antagonists target regulatory T cells and exert adjuvant activity in vaccination. Proc Natl Acad Sci U S A 105:10221–10226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Davies MN, Bayry J, Tchilian EZ, Vani J, Shaila MS, Forbes EK et al (2009) Toward the discovery of vaccine adjuvants: coupling in silico screening and in vitro analysis of antagonist binding to human and mouse CCR4 receptors. PLoS One 4, e8084. doi:10.1371/journal.pone.0008084

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pere H, Montier Y, Bayry J, Quintin-Colonna F, Merillon N, Dransart E et al (2011) A CCR4 antagonist combined with vaccines induce antigen-specific CD8+ T cells and tumor immunity against self antigens. Blood 118:4853–4862

    Article  CAS  PubMed  Google Scholar 

  6. Vitali C, Mingozzi F, Broggi A, Barresi S, Zolezzi F, Bayry J et al (2012) Migratory and not lymphoid-resident dendritic cells maintain peripheral self-tolerance and prevent autoimmunity via induction of iTreg cells. Blood 120:1237–1245

    Article  CAS  PubMed  Google Scholar 

  7. Othy S, Topçu S, Kaveri SV, Bayry J (2012) Effect of CC chemokine receptor 4 antagonism on the evolution of experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 109:E2412–E2413

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shevchenko I, Karakhanova S, Soltek S, Link J, Bayry J, Werner J et al (2013) Low-dose gemcitabine depletes regulatory T cells and improves survival in the orthotopic Panc02 model of pancreatic cancer. Int J Cancer 133:98–107

    Article  CAS  PubMed  Google Scholar 

  9. Bosschem I, Bayry J, De Bruyne E, Van Deun K, Smet A, Vercauteren G et al (2015) Effect of different adjuvants on protection and side-effects induced by Helicobacter suis whole-cell lysate vaccination. PLoS One 10, e0131364. doi:10.1371/journal.pone.0131364

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10:490–500

    Article  CAS  PubMed  Google Scholar 

  11. Ohkura N, Kitagawa Y, Sakaguchi S (2013) Development and maintenance of regulatory T cells. Immunity 38:414–423

    Article  CAS  PubMed  Google Scholar 

  12. Trinath J, Hegde P, Sharma M, Maddur MS, Rabin M, Vallat JM et al (2013) Intravenous immunoglobulin expands regulatory T cells via induction of cyclooxygenase-2-dependent prostaglandin E2 in human dendritic cells. Blood 122:1419–1427

    Article  CAS  PubMed  Google Scholar 

  13. Trinath J, Maddur MS, Kaveri SV, Balaji KN, Bayry J (2012) Mycobacterium tuberculosis promotes regulatory T-cell expansion via induction of programmed death-1 ligand 1 (PD-L1, CD274) on dendritic cells. J Infect Dis 205:694–696

    Article  CAS  PubMed  Google Scholar 

  14. Gupta N, Hegde P, Lecerf M, Nain M, Kalia M, Vrati S et al (2014) Japanese encephalitis virus expands regulatory T cells by increasing the expression of PD-L1 on dendritic cells. Eur J Immunol 44:1363–1374

    Article  CAS  PubMed  Google Scholar 

  15. Maddur MS, Trinath J, Rabin M, Bolgert F, Guy M, Vallat JM et al (2015) Intravenous immunoglobulin-mediated expansion of regulatory T cells in autoimmune patients is associated with increased prostaglandin E2 levels in the circulation. Cell Mol Immunol 12:650–652

    Article  CAS  PubMed  Google Scholar 

  16. Stephen-Victor E, Saha C, Sharma M, Holla S, Balaji KN, Kaveri SV et al (2015) Inhibition of programmed death 1 ligand 1 on dendritic cells enhances Mycobacterium-mediated interferon γ (IFN-γ) production without modulating the frequencies of IFN-γ-producing CD4+ T cells. J Infect Dis 211:1027–1029

    Article  PubMed  Google Scholar 

  17. Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S (2008) Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci U S A 105:10113–10118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bayry J, Triebel F, Kaveri SV, Tough DF (2007) Human dendritic cells acquire a semimature phenotype and lymph node homing potential through interaction with CD4+CD25+ regulatory T cells. J Immunol 178:4184–4193

    Article  CAS  PubMed  Google Scholar 

  19. Tang Q, Adams JY, Tooley AJ, Bi M, Fife BT, Serra P et al (2006) Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol 7:83–92

    Article  CAS  PubMed  Google Scholar 

  20. André S, Tough DF, Lacroix-Desmazes S, Kaveri SV, Bayry J (2009) Surveillance of antigen-presenting cells by CD4+CD25+ regulatory T cells in autoimmunity: immunopathogenesis and therapeutic implications. Am J Pathol 174:1575–1887

    Article  PubMed  PubMed Central  Google Scholar 

  21. Navarrete AM, Delignat S, Teillaud JL, Kaveri SV, Lacroix-Desmazes BJ (2011) CD4+CD25+ regulatory T cell-mediated changes in the expression of endocytic receptors and endocytosis process of human dendritic cells. Vaccine 29:2649–2652

    Article  CAS  PubMed  Google Scholar 

  22. Navarrete AM, Meslier Y, Teyssandier M, André S, Delignat S, Triebel S et al (2009) CD4+CD25+ regulatory T cells modulate human dendritic cell chemokines by multiple mechanisms. Arthritis Rheum 60:2848–2849

    Article  CAS  PubMed  Google Scholar 

  23. Miyara M, Ito Y, Sakaguchi S (2014) TREG-cell therapies for autoimmune rheumatic diseases. Nat Rev Rheumatol 10:543–551

    Article  CAS  PubMed  Google Scholar 

  24. Bayry J, Gautier JF (2016) Regulatory T cell immunotherapy for Type 1 diabetes: a step closer to success? Cell Metab 23:231–233

    Article  CAS  PubMed  Google Scholar 

  25. Bayry J, Sibéril S, Triebel F, Tough DF, Kaveri SV (2007) Rescuing the CD4+CD25+ regulatory T cell functions in rheumatoid arthritis by cytokine-targeted monoclonal antibody therapy. Drug Discov Today 12:548–552

    Article  CAS  PubMed  Google Scholar 

  26. Maizels RM, Smith KA (2011) Regulatory T cells in infection. Adv Immunol 112:73–136

    Article  PubMed  Google Scholar 

  27. Bayry J (2014) Regulatory T cells as adjuvant target for enhancing the viral disease vaccine efficacy. Virusdisease 25:18–25

    Article  PubMed  Google Scholar 

  28. Sugiyama D, Nishikawa H, Maeda Y, Nishioka M, Tanemura A, Katayama I et al (2013) Anti-CCR4 mAb selectively depletes effector-type FoxP3+CD4+ regulatory T cells, evoking antitumor immune responses in humans. Proc Natl Acad Sci U S A 110:17945–17950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pere H, Tanchot C, Bayry J, Terme M, Taieb J, Badoual C et al (2012) Comprehensive analysis of current approaches to inhibit regulatory T cells in cancer. Oncoimmunology 1:326–333

    Article  PubMed  PubMed Central  Google Scholar 

  30. Moore AC, Gallimore A, Draper SJ, Watkins KR, Gilbert SC, Hill AV (2005) Anti-CD25 antibody enhancement of vaccine-induced immunogenicity: increased durable cellular immunity with reduced immunodominance. J Immunol 175:7264–7273

    Article  CAS  PubMed  Google Scholar 

  31. Bayry J, Flower DR, Tough DF, Kaveri SV (2008) From ‘perfect mix’ to ‘potion magique’-regulatory T cells and anti-inflammatory cytokines as adjuvant targets. Nat Rev Microbiol 6:C1

    Article  PubMed  Google Scholar 

  32. Iellem A, Mariani M, Lang R, Recalde H, Panina-Bordignon P, Sinigaglia F et al (2001) Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med 194:847–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bayry J, Tartour E, Tough DF (2014) Targeting CCR4 as an emerging strategy for cancer therapy and vaccines. Trends Pharmacol Sci 35:163–165

    Article  CAS  PubMed  Google Scholar 

  34. Cabaniols JP, Cibotti R, Kourilsky P, Kosmatopoulos K, Kanellopoulos JM (1994) Dose-dependent T cell tolerance to an immunodominant self peptide. Eur J Immunol 24:1743–1749

    Article  CAS  PubMed  Google Scholar 

  35. Wall EM, Milne K, Martin ML, Watson PH, Theiss P, Nelson BH (2007) Spontaneous mammary tumors differ widely in their inherent sensitivity to adoptively transferred T cells. Cancer Res 67:6442–6450

    Article  CAS  PubMed  Google Scholar 

  36. Baele M, Decostere A, Vandamme P, Ceelen L, Hellemans A, Chiers K et al (2008) Isolation and characterization of Helicobacter suis sp. nov. from pig stomachs. Int J Syst Evol Microbiol 58:1350–1358

    Article  CAS  PubMed  Google Scholar 

  37. Liang J, De Bruyne E, Ducatelle R, Smet A, Haesebrouck F, Flahou B (2015) Purification of Helicobacter suis strains from biphasic cultures by single colony isolation: influence on strain characteristics. Helicobacter 3:206–216

    Article  Google Scholar 

  38. Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8:52–56, 29

    Article  CAS  PubMed  Google Scholar 

  39. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33-38):27–38

    Google Scholar 

  40. Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr et al (2005) The Amber biomolecular simulation programs. J Comput Chem 2005(26):1668–1688

    Article  Google Scholar 

  41. Price DJ, Brooks CL 3rd (2004) A modified TIP3P water potential for simulation with Ewald summation. J Chem Phys 121:10096–10103

    Article  CAS  PubMed  Google Scholar 

  42. Homer RW, Swanson J, Jilek RJ, Hurst T, Clark RD (2008) SYBYL line notation (SLN): a single notation to represent chemical structures, queries, reactions, and virtual libraries. J Chem Inf Model 48:2294–2307

    Article  CAS  PubMed  Google Scholar 

  43. Sadowski J (1997) A hybrid approach for addressing ring flexibility in 3D database searching. J Comput Aided Mol Des 11:53–60

    Article  CAS  PubMed  Google Scholar 

  44. Maddur MS, Sharma M, Hegde P, Stephen-Victor E, Pulendran B, Kaveri SV et al (2014) Human B cells induce dendritic cell maturation and favour Th2 polarization by inducing OX-40 ligand. Nat Commun 5:4092. doi:10.1038/ncomms5092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sandoval F, Terme M, Nizard M, Badoual C, Bureau MF, Freyburger L et al (2013) Mucosal imprinting of vaccine-induced CD8(+) T cells is crucial to inhibit the growth of mucosal tumors. Sci Transl Med 5:172ra120

    Article  Google Scholar 

  46. Adotevi O, Vingert B, Freyburger L, Shrikant P, Lone YC, Quintin-Colonna F et al (2007) B subunit of Shiga toxin-based vaccines synergize with {alpha} galactosylceramide to break tolerance against self antigen and elicit antiviral immunity. J Immunol 179:3371–3379

    Article  CAS  PubMed  Google Scholar 

  47. Bercovici N, Haicheur N, Massicard S, Vernel-Pauillac F, Adotevi O, Landais D et al (2008) Analysis and characterization of antitumor T-cell response after administration of dendritic cells loaded with allogeneic tumor lysate to metastatic melanoma patients. J Immunother 31:101–112

    Article  PubMed  Google Scholar 

  48. O’Rourke JL, Solnick JV, Neilan BA (2004) Description of ‘Candidatus Helicobacter heilmannii’ based on DNA sequence analysis of 16S rRNA and urease genes. Int J Syst Evol Microbiol 54:2203–2211

    Article  PubMed  Google Scholar 

  49. Flahou B, Van Deun K, Pasmans F, Smet A, Volf J, Rychlik I et al (2012) The local immune response of mice after Helicobacter suis infection: strain differences and distinction with Helicobacter pylori. Vet Res 43:75. doi:10.1186/1297-9716-43-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  51. Stolte M, Meining A (2001) The updated Sydney system: classification and grading of gastritis as the basis of diagnosis and treatment. Can J Gastroenterol 15:591–598

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.N.D., D.R.F., D.F.T., and J.B. were affiliated to Edward Jenner Institute for Vaccine Research, University of Oxford, UK, when the work was initiated. Supported by the Institut National de la Santé et de la Recherche Médicale, Université Pierre et Marie Curie and Université Paris Descartes, Canceropole Ile de France, Agence Nationale de la Recherche, Ligue contre le Cancer, Association pour la Recherche sur le Cancer, Pole de compétitivité Medicen (Immucan) Centre d’investigation Clinique en Biothérapie (CIC-BT505), SIRIC-CARPEM and Labex Immuno-Oncology, France; European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement HEALTH-2010.2.4.5-2 ALLFUN; and the Indo-French Center for Promotion of Advanced Research (CEFIPRA, Reference No: 4803-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagadeesh Bayry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Davies, M.N. et al. (2017). In Silico Adjuvant Design and Validation. In: Fox, C. (eds) Vaccine Adjuvants. Methods in Molecular Biology, vol 1494. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6445-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6445-1_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6443-7

  • Online ISBN: 978-1-4939-6445-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics