Skip to main content

Crumple: An Efficient Tool to Explore Thoroughly the RNA Folding Landscape

  • Protocol
  • First Online:
RNA Structure Determination

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1490))

Abstract

The folding landscape for an RNA sequence contains many diverse structures and motifs, which are often sampled rather than completely explored. Today’s supercomputers make the complete enumeration of all possible folds for an RNA and a detailed description of the RNA folding landscape a more feasible task. This chapter provides protocols for using the Crumple folding algorithm, an efficient tool to generate all possible non-pseudoknotted folds for an RNA sequence. Crumple in conjunction with Sliding Windows and Assembly can incorporate experimental constraints on the global features of an RNA, such as the minimum number and lengths of helices, which may be determined by crystallography or cryo-electron microscopy. This complete enumeration method is independent of free-energy minimization and allows the user to incorporate experimental data such as chemical probing, SELEX data on RNA–protein binding motifs, and phylogenetic covariation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schroeder SJ, Stone JW, Bleckley S, Gibbons T, Mathews DM (2011) Ensemble of secondary structures for encapsidated satellite tobacco mosaic virus RNA consistent with chemical probing and crystallography constraints. Biophys J 101:167–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bleckley S, Stone JW, Schroeder SJ (2012) Crumple: a method for complete enumeration of all possible pseudoknot-free RNA secondary structures. PLoS One 7:e52414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pipas J, McMahon J (1975) Methods for predicting RNA secondary structure. Proc Natl Acad Sci U S A 72:2017–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wuchty S, Fontana W, Hofacker IL, Schuster P (1999) Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49:145–165

    Article  CAS  PubMed  Google Scholar 

  5. Stone JW, Bleckley S, Lavelle S, Schroeder SJ (2015) A parallel implementation of the Wuchty algorithm with additional experimental filters to more thoroughly explore RNA conformational space. PLoS One 10:e0117217

    Article  PubMed  PubMed Central  Google Scholar 

  6. Larson NB, Day J, Greenwood A, McPherson A (1998) Refined structure of satellite tobacco mosaic virus at 1.8 A resolution. J Mol Biol 277:37–59

    Article  CAS  PubMed  Google Scholar 

  7. Larson SB, Koszelak S, Day J, Greenwood A, Dodds JA, McPherson A (1993) Double helical RNA in satellite tobacco mosaic virus. Nature 361:179–182

    Article  CAS  PubMed  Google Scholar 

  8. Golmohammadi R, Valegard K, Fridborg K, Liljas L (1993) The refined structure of bacteriophage MS2 at 2.8 A resolution. J Mol Biol 234:620–639

    Article  CAS  PubMed  Google Scholar 

  9. Valegard K, Liljas L, Fridborg K, Unge T (1990) The three-dimensional structure of the bacterial virus MS2. Nature 345:36–41

    Article  CAS  PubMed  Google Scholar 

  10. Bleckley S, Schroeder SJ (2012) Incorporating global features of RNA motifs in predictions for an ensemble of secondary structures for encapsidated MS2 bacteriophage RNA. RNA 18:1309–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shepherd CM, Borelli IA, Lander G, Natarajan P, Siddavanahalli V, Bajaj C, Johnson JE, Brooks CL, Reddy VS (2006) VIPERdb: a relational database for structural virology. Nucleic Acids Res 34:D386–D389

    Article  CAS  PubMed  Google Scholar 

  12. Schroeder SJ (2014) Alternative viewpoints and alternative structures for satellite tobacco mosaic virus RNA. Biochemistry 53:6728–6737

    Article  CAS  PubMed  Google Scholar 

  13. Larson SB, McPherson A (2001) Satellite tobacco mosaic virus RNA: structure and implications for assembly. Curr Opin Struct Biol 11:59–65

    Article  CAS  PubMed  Google Scholar 

  14. Zeng Y, Larson SB, Heitsch CE, McPherson A, Harvey SC (2012) A model for the structure of satellite tobacco mosaic virus. J Struct Biol 180:110–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Turner DH, Mathews DH (2009) NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res 38:D280–D282

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nguyen M-T, Schroeder SJ (2010) Consecutive terminal GU pairs stabilize RNA helices. Biochemistry 49:10574–10581

    Article  CAS  PubMed  Google Scholar 

  17. Chen JL, Dishler AL, Kennedy SD, Yildirim I, Liu B, Turner DH, Serra MJ (2012) Testing the nearest neighbor model for canonical RNA base pairs: revision of GU parameters. Biochemistry 51:3508–3522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schroeder SJ, Turner DH (2001) Thermodynamic stabilities of internal loops with GU closing pairs in RNA. Biochemistry 40:11509–11517

    Article  CAS  PubMed  Google Scholar 

  19. Gu X, Mooers BH, Thomas LM, Malone J, Harris S et al (2015) Structures and energetics of four adjacent G.U pairs that stabilize an RNA helix. J Phys Chem B 119:13252–13261

    Article  CAS  PubMed  Google Scholar 

  20. Schroeder SJ (2009) Advances in RNA structure prediction from sequence: new tools for generating hypotheses about viral RNA structure-function relationships. J Virol 83:6326–6334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dijkstra EW, Scholten CS (1980) Termination detection for diffusing computations. Inform Process Lett 11:1–4

    Article  Google Scholar 

  22. Dinan J, Olivier S, Sabin G, Prins J, Sadayappan P, Tseng C-W (2007) Dynamic load balancing of unbalanced computations using message passing; March 2007. Long Beach, CA. IEEE

    Google Scholar 

  23. Lorenz R, Bernhart SH, Honer Zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA package 2.0. Algorithms Mol Biol 6:26

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A 101:7287–7292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dykeman EC, Grayson NE, Toropova K, Ranson NA, Stockley PG et al (2011) Simple rules for efficient assembly predict the layout of a packaged viral RNA. J Mol Biol 408:399–407

    Article  CAS  PubMed  Google Scholar 

  26. Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11:129

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jonathan W. Stone, Samuel Bleckley, and Jui-wen Liu for the development of the Crumple algorithm and RNA folding software in the Schroeder lab. We thank Kimberly Ughamadu for helpful comments on this manuscript and Fig. 8 pilegrams. We thank Henry Neeman and the staff at the Oklahoma Supercomputing Center for Education and Research (OSCER) for advice, assistance, and access to the Sooner and Boomer supercomputers. This work was supported by NSF CAREER award 0844913.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan J. Schroeder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Guerra, I., Schroeder, S.J. (2016). Crumple: An Efficient Tool to Explore Thoroughly the RNA Folding Landscape. In: Turner, D., Mathews, D. (eds) RNA Structure Determination. Methods in Molecular Biology, vol 1490. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6433-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6433-8_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6431-4

  • Online ISBN: 978-1-4939-6433-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics