Skip to main content

Precise Network Modeling of Systems Genetics Data Using the Bayesian Network Webserver

  • Protocol
  • First Online:
Systems Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1488))

Abstract

The Bayesian Network Webserver (BNW, http://compbio.uthsc.edu/BNW) is an integrated platform for Bayesian network modeling of biological datasets. It provides a web-based network modeling environment that seamlessly integrates advanced algorithms for probabilistic causal modeling and reasoning with Bayesian networks. BNW is designed for precise modeling of relatively small networks that contain less than 20 nodes. The structure learning algorithms used by BNW guarantee the discovery of the best (most probable) network structure given the data. To facilitate network modeling across multiple biological levels, BNW provides a very flexible interface that allows users to assign network nodes into different tiers and define the relationships between and within the tiers. This function is particularly useful for modeling systems genetics datasets that often consist of multiscalar heterogeneous genotype-to-phenotype data. BNW enables users to, within seconds or minutes, go from having a simply formatted input file containing a dataset to using a network model to make predictions about the interactions between variables and the potential effects of experimental interventions. In this chapter, we will introduce the functions of BNW and show how to model systems genetics datasets with BNW.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The Genomes Project, C (2015) A global reference for human genetic variation. Nature 526:68–74

    Article  Google Scholar 

  2. Visscher PM, Brown MA, McCarthy MI, Yang J (2012) Five years of GWAS discovery. Am J Hum Genet 90:7–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci 106:9362–9367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L et al (2014) The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42:D1001–D1006

    Article  CAS  PubMed  Google Scholar 

  5. Brem RB, Yvert G, Clinton R, Kruglyak L (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296:752–755

    Article  CAS  PubMed  Google Scholar 

  6. Cheung VG, Spielman RS (2002) The genetics of variation in gene expression. Nat Genet 32(Suppl):522–525

    Article  CAS  PubMed  Google Scholar 

  7. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G et al (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297–302

    Article  CAS  PubMed  Google Scholar 

  8. Bystrykh L, Weersing E, Dontje B, Sutton S, Pletcher MT, Wiltshire T, Su AI, Vellenga E, Wang J, Manly KF et al (2005) Uncovering regulatory pathways that affect hematopoietic stem cell function using ‘genetical genomics’. Nat Genet 37:225–232

    Article  CAS  PubMed  Google Scholar 

  9. Cheung VG, Spielman RS, Ewens KG, Weber TM, Morley M, Burdick JT (2005) Mapping determinants of human gene expression by regional and genome-wide association. Nature 437:1365–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hubner N, Wallace CA, Zimdahl H, Petretto E, Schulz H, Maciver F, Mueller M, Hummel O, Monti J, Zidek V et al (2005) Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet 37:243–253

    Article  CAS  PubMed  Google Scholar 

  11. Mehrabian M, Allayee H, Stockton J, Lum PY, Drake TA, Castellani LW, Suh M, Armour C, Edwards S, Lamb J et al (2005) Integrating genotypic and expression data in a segregating mouse population to identify 5-lipoxygenase as a susceptibility gene for obesity and bone traits. Nat Genet 37:1224–1233

    Article  CAS  PubMed  Google Scholar 

  12. Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, Guhathakurta D, Sieberts SK, Monks S, Reitman M, Zhang C et al (2005) An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 37:710–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li H, Lu L, Manly KF, Chesler EJ, Bao L, Wang J, Zhou M, Williams RW, Cui Y (2005) Inferring gene transcriptional modulatory relations: a genetical genomics approach. Hum Mol Genet 14:1119–1125

    Article  CAS  PubMed  Google Scholar 

  14. Bao L, Wei L, Peirce J, Homayouni R, Li H, Zhou M, Chen H, Lu L, Williams R, Pfeffer L et al (2006) Combining gene expression QTL mapping and phenotypic spectrum analysis to uncover gene regulatory relations. Mamm Genome 17:575–583

    Article  CAS  PubMed  Google Scholar 

  15. Li H, Chen H, Bao L, Manly KF, Chesler EJ, Lu L, Wang J, Zhou M, Williams RW, Cui Y (2006) Integrative genetic analysis of transcription modules: towards filling the gap between genetic loci and inherited traits. Hum Mol Genet 15:481–492

    Article  CAS  PubMed  Google Scholar 

  16. Bao L, Peirce JL, Zhou M, Li H, Goldowitz D, Williams RW, Lu L, Cui Y (2007) An integrative genomics strategy for systematic characterization of genetic loci modulating phenotypes. Hum Mol Genet 16:1381–1390

    Article  CAS  PubMed  Google Scholar 

  17. Alberts R, Lu L, Williams R, Schughart K (2011) Genome-wide analysis of the mouse lung transcriptome reveals novel molecular gene interaction networks and cell-specific expression signatures. Respir Res 12:61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. MacLellan WR, Wang Y, Lusis AJ (2012) Systems-based approaches to cardiovascular disease. Nat Rev Cardiol 9:172–184

    Article  CAS  PubMed  Google Scholar 

  19. Kadarmideen HN, Von Rohr P, Janss LLG (2006) From genetical genomics to systems genetics: potential applications in quantitative genomics and animal breeding. Mamm Genome 17:548–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sieberts SK, Schadt EE (2007) Moving toward a system genetics view of disease. Mamm Genome 18:389–401

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17:388–391

    Article  CAS  PubMed  Google Scholar 

  22. Ha T, Swanson D, Larouche M, Glenn R, Weeden D, Zhang P, Hamre K, Langston M, Phillips C, Song M et al (2015) CbGRiTS: cerebellar gene regulation in time and space. Dev Biol 397:18–30

    Article  CAS  PubMed  Google Scholar 

  23. Mulligan MK, Williams RW (2015) Systems genetics of behavior: a prelude. Curr Opin Behav Sci 2:108–115

    Article  Google Scholar 

  24. van der Sijde MR, Ng A, Fu J (2014) Systems genetics: from GWAS to disease pathways. Biochim Biophys Acta 1842:1903–1909

    Article  PubMed  Google Scholar 

  25. Civelek M, Lusis AJ (2014) Systems genetics approaches to understand complex traits. Nat Rev Genet 15:34–48

    Article  CAS  PubMed  Google Scholar 

  26. Li Q, Seo J-H, Stranger B, McKenna A, Pe’er I, LaFramboise T, Brown M, Tyekucheva S, Freedman ML (2013) Integrative eQTL-based analyses reveal the biology of breast cancer risk loci. Cell 152:633–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li Q, Stram A, Chen C, Kar S, Gayther S, Pharoah P, Haiman C, Stranger B, Kraft P, Freedman ML (2014) Expression QTL-based analyses reveal candidate causal genes and loci across five tumor types. Hum Mol Genet 23:5294–5302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Faraji F, Hu Y, Wu G, Goldberger NE, Walker RC, Zhang J, Hunter KW (2014) An integrated systems genetics screen reveals the transcriptional structure of inherited predisposition to metastatic disease. Genome Res 24:227–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kogelman LJA, Zhernakova DV, Westra HJ, Cirera S, Fredholm M, Franke L, Kadarmideen HN (2015) An integrative systems genetics approach reveals potential causal genes and pathways related to obesity. Genome Med 7:1–15

    Article  Google Scholar 

  30. Dobrin R, Zhu J, Molony C, Argman C, Parrish M, Carlson S, Allan M, Pomp D, Schadt E (2009) Multi-tissue coexpression networks reveal unexpected subnetworks associated with disease. Genome Biol 10:R55

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ghosh S, Vivar J, Nelson CP, Willenborg C, Segrè AV, Mäkinen VP, Nikpay M, Erdmann J, Blankenberg S, O'Donnell C et al (2015) Systems genetics analysis of genome-wide association study reveals novel associations between key biological processes and coronary artery disease. Arterioscler Thromb Vasc Biol 35:1712–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lusis AJ, Weiss JN (2010) Cardiovascular networks: systems-based approaches to cardiovascular disease. Circulation 121:157–170

    Article  PubMed  PubMed Central  Google Scholar 

  33. Andreux PA, Williams EG, Koutnikova H, Houtkooper RH, Champy MF, Henry H, Schoonjans K, Williams RW, Auwerx J (2012) Systems genetics of metabolism: the use of the BXD murine reference panel for multiscalar integration of traits. Cell 150:1287–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Taneera J, Lang S, Sharma A, Fadista J, Zhou Y, Ahlqvist E, Jonsson A, Lyssenko V, Vikman P, Hansson O et al (2012) A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets. Cell Metab 16:122–134

    Article  CAS  PubMed  Google Scholar 

  35. Ziebarth JD, Cook MN, Wang X, Williams RW, Lu L, Cui Y (2012) Treatment- and population-dependent activity patterns of behavioral and expression QTLs. PLoS One 7, e31805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Palmer RHC, McGeary JE, Francazio S, Raphael BJ, Lander AD, Heath AC, Knopik VS (2012) The genetics of alcohol dependence: advancing towards systems-based approaches. Drug Alcohol Depend 125:179–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ziebarth JD, Cook MN, Li B, Williams RW, Lu L, Cui Y (2010) Biomedical sciences and engineering conference (BSEC), 2010. IEEE 2010:1–4

    Google Scholar 

  38. Kollmus H, Wilk E, Schughart K (2014) Systems biology and systems genetics – novel innovative approaches to study host-pathogen interactions during influenza infection. Curr Opin Virol 6:47–54

    Article  PubMed  Google Scholar 

  39. Miyairi I, Ziebarth J, Laxton JD, Wang X, van Rooijen N, Williams RW, Lu L, Byrne GI, Cui Y (2012) Host genetics and chlamydia disease: prediction and validation of disease severity mechanisms. PLoS One 7, e33781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Emery FD, Parvathareddy J, Pandey AK, Cui Y, Williams RW, Miller MA (2014) Genetic control of weight loss during pneumonic Burkholderia pseudomallei infection. Pathog Dis 71:249–264

    Article  PubMed  Google Scholar 

  41. Ziebarth JD, Bhattacharya A, Cui Y (2013) Bayesian Network Webserver: a comprehensive tool for biological network modeling. Bioinformatics 29:2801–2803

    Article  CAS  PubMed  Google Scholar 

  42. Pearl J (2000) Causality: models, reasoning, and inference. Cambridge University Press, Cambridge

    Google Scholar 

  43. Cui Y (2007) In: Deng HW (ed) Current topics in human genetics: studies of complex diseases. World Scientific, Singapore, pp 433–448

    Google Scholar 

  44. Cui Y (2006) In: Shannon F, Rao S (eds) Microarrays and transcription networks. Landes Bioscience, Georgetown, KY, pp 114–126

    Google Scholar 

  45. Tasaki S, Sauerwine B, Hoff B, Toyoshiba H, Gaiteri C, Chaibub Neto E (2015) Bayesian network reconstruction using systems genetics data: comparison of MCMC methods., Genetics

    Google Scholar 

  46. Shipley B (2000) Cause and correlation in biology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  47. Bøttcher SG, Dethlefsen C (2003) Deal: a package for learning bayesian networks. J Stat Softw 8:1–19

    Google Scholar 

  48. Tian J, He R, Ram L (2010) Bayesian model averaging using the k-best Bayesian network structures. Proc Conf Uncertain Artif Intel 2010:589–597

    Google Scholar 

  49. Bolouri H, Davidson EH (2002) Modeling transcriptional regulatory networks. Bioessays 24:1118–1129

    Article  CAS  PubMed  Google Scholar 

  50. Davidson EH (2010) Emerging properties of animal gene regulatory networks. Nature 468:911–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mitra K, Carvunis A-R, Ramesh SK, Ideker T (2013) Integrative approaches for finding modular structure in biological networks. Nat Rev Genet 14:719–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Aittokallio T, Schwikowski B (2006) Graph-based methods for analysing networks in cell biology. Brief Bioinform 7:243–255

    Article  CAS  PubMed  Google Scholar 

  53. Bao L, Xia X, Cui Y (2010) Expression QTL modules as functional components underlying higher-order phenotypes. PLoS One 5, e14313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ziebarth, J.D., Cui, Y. (2017). Precise Network Modeling of Systems Genetics Data Using the Bayesian Network Webserver. In: Schughart, K., Williams, R. (eds) Systems Genetics. Methods in Molecular Biology, vol 1488. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6427-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6427-7_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6425-3

  • Online ISBN: 978-1-4939-6427-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics