Skip to main content

Measuring the Kinetic and Mechanical Properties of Non-processive Myosins Using Optical Tweezers

  • Protocol
  • First Online:
Optical Tweezers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1486))

Abstract

The myosin superfamily of molecular motors utilizes energy from ATP hydrolysis to generate force and motility along actin filaments in a diverse array of cellular processes. These motors are structurally, kinetically, and mechanically tuned to their specific molecular roles in the cell. Optical trapping techniques have played a central role in elucidating the mechanisms by which myosins generate force and in exposing the remarkable diversity of myosin functions. Here, we present thorough methods for measuring and analyzing interactions between actin and non-processive myosins using optical trapping techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gray KA, Yates B, Seal RL, Wright MW, Bruford EA (2015) Genenames.org: the HGNC resources in 2015. Nucleic Acids Res 43:D1079–D1085

    Article  CAS  Google Scholar 

  2. Krendel M, Mooseker MS (2005) Myosins: tails (and heads) of functional diversity. Physiology (Bethesda) 20:239–251

    Article  CAS  Google Scholar 

  3. Hartman MA, Spudich JA (2012) The myosin superfamily at a glance. J Cell Sci 125:1627–1632

    Article  CAS  Google Scholar 

  4. De La Cruz EM, Ostap EM (2004) Relating biochemistry and function in the myosin superfamily. Curr Opin Cell Biol 16:61–67

    Article  Google Scholar 

  5. Redowicz MJ (2002) Myosins and pathology: genetics and biology. Acta Biochim Pol 49:789–804

    CAS  Google Scholar 

  6. Elting MW, Spudich JA (2012) Future challenges in single-molecule fluorescence and laser trap approaches to studies of molecular motors. Dev Cell 23:1084–1091

    Article  CAS  Google Scholar 

  7. Batters C, Veigel C, Homsher E, Sellers JR (2014) To understand muscle you must take it apart. Front Physiol 5:90

    Article  Google Scholar 

  8. Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368:113–119

    Article  CAS  Google Scholar 

  9. Altman D, Sweeney HL, Spudich JA (2004) The mechanism of myosin VI translocation and its load-induced anchoring. Cell 116:737–749

    Article  CAS  Google Scholar 

  10. Takagi Y, Farrow RE, Billington N, Nagy A, Batters C, Yang Y, Sellers JR, Molloy JE (2014) Myosin-10 produces its power-stroke in two phases and moves processively along a single actin filament under low load. Proc Natl Acad Sci U S A 111:E1833–E1842

    Article  CAS  Google Scholar 

  11. Nishizaka T, Miyata H, Yoshikawa H, Ishiwata S, Kinosita K Jr (1995) Unbinding force of a single motor molecule of muscle measured using optical tweezers. Nature 377:251–254

    Article  CAS  Google Scholar 

  12. Kishino A, Yanagida T (1988) Force measurements by micromanipulation of a single actin filament by glass needles. Nature 334:74–76

    Article  CAS  Google Scholar 

  13. Kitamura K, Tokunaga M, Iwane AH, Yanagida T (1999) A single myosin head moves along an actin filament with regular steps of 5.3 nanometres. Nature 397:129–134

    Article  CAS  Google Scholar 

  14. Sung J, Sivaramakrishnan S, Dunn AR, Spudich JA (2010) Single-molecule dual-beam optical trap analysis of protein structure and function. Methods Enzymol 475:321–375

    Article  CAS  Google Scholar 

  15. Srikakulam R, Winkelmann DA (1999) Myosin II folding is mediated by a molecular chaperonin. J Biol Chem 274:27265–27273

    Article  CAS  Google Scholar 

  16. Resnicow DI, Deacon JC, Warrick HM, Spudich JA, Leinwand LA (2010) Functional diversity among a family of human skeletal muscle myosin motors. Proc Natl Acad Sci U S A 107:1053–1058

    Article  CAS  Google Scholar 

  17. Deacon JC, Bloemink MJ, Rezavandi H, Geeves MA, Leinwand LA (2012) Identification of functional differences between recombinant human alpha and beta cardiac myosin motors. Cell Mol Life Sci 69:2261–2277

    Article  CAS  Google Scholar 

  18. Manstein DJ, Ruppel KM, Spudich JA (1989) Expression and characterization of a functional myosin head fragment in Dictyostelium discoideum. Science 246:656–658

    Article  CAS  Google Scholar 

  19. Sweeney HL, Straceski AJ, Leinwand LA, Tikunov BA, Faust L (1994) Heterologous expression of a cardiomyopathic myosin that is defective in its actin interaction. J Biol Chem 269:1603–1605

    CAS  Google Scholar 

  20. Spudich JA, Watt S (1971) The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem 246:4866–4871

    CAS  Google Scholar 

  21. Kaminer B, Bell AL (1966) Myosin filamentogenesis: effects of pH and ionic concentration. J Mol Biol 20:391–401

    Article  CAS  Google Scholar 

  22. Greenberg MJ, Lin T, Goldman YE, Shuman H, Ostap EM (2012) Myosin IC generates power over a range of loads via a new tension-sensing mechanism. Proc Natl Acad Sci U S A 109:E2433–E2440

    Article  CAS  Google Scholar 

  23. Takagi Y, Homsher EE, Goldman YE, Shuman H (2006) Force generation in single conventional actomyosin complexes under high dynamic load. Biophys J 90:1295–1307

    Article  CAS  Google Scholar 

  24. Svoboda K, Block SM (1994) Biological applications of optical forces. Annu Rev Biophys Biomol Struct 23:247–285

    Article  CAS  Google Scholar 

  25. Norstrom MF, Smithback PA, Rock RS (2010) Unconventional processive mechanics of non-muscle myosin IIB. J Biol Chem 285:26326–26334

    Article  CAS  Google Scholar 

  26. Guilford WH, Dupuis DE, Kennedy G, Wu J, Patlak JB, Warshaw DM (1997) Smooth muscle and skeletal muscle myosins produce similar unitary forces and displacements in the laser trap. Biophys J 72:1006–1021

    Article  CAS  Google Scholar 

  27. Mehta AD, Finer JT, Spudich JA (1997) Detection of single-molecule interactions using correlated thermal diffusion. Proc Natl Acad Sci U S A 94:7927–7931

    Article  CAS  Google Scholar 

  28. Capitanio M, Canepari M, Maffei M, Beneventi D, Monico C, Vanzi F, Bottinelli R, Pavone FS (2012) Ultrafast force-clamp spectroscopy of single molecules reveals load dependence of myosin working stroke. Nat Methods 9:1013–1019

    Article  CAS  Google Scholar 

  29. Molloy JE, Burns JE, Kendrick-Jones J, Tregear RT, White DC (1995) Movement and force produced by a single myosin head. Nature 378:209–212

    Article  CAS  Google Scholar 

  30. Knight AE, Veigel C, Chambers C, Molloy JE (2001) Analysis of single-molecule mechanical recordings: application to acto-myosin interactions. Prog Biophys Mol Biol 77:45–72

    Article  CAS  Google Scholar 

  31. Veigel C, Bartoo ML, White DC, Sparrow JC, Molloy JE (1998) The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer. Biophys J 75:1424–1438

    Article  CAS  Google Scholar 

  32. Veigel C, Coluccio LM, Jontes JD, Sparrow JC, Milligan RA, Molloy JE (1999) The motor protein myosin-I produces its working stroke in two steps. Nature 398:530–533

    Article  CAS  Google Scholar 

  33. Laakso JM, Lewis JH, Shuman H, Ostap EM (2008) Myosin I can act as a molecular force sensor. Science 321:133–136

    Article  CAS  Google Scholar 

  34. Press WH (1992) Numerical recipes in C: the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  35. Wilks SS (1938) The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann Math Stat 9:60–62

    Article  Google Scholar 

  36. Veigel C, Wang F, Bartoo ML, Sellers JR, Molloy JE (2002) The gated gait of the processive molecular motor, myosin V. Nat Cell Biol 4:59–65

    Article  CAS  Google Scholar 

  37. Veigel C, Molloy JE, Schmitz S, Kendrick-Jones J (2003) Load-dependent kinetics of force production by smooth muscle myosin measured with optical tweezers. Nat Cell Biol 5:980–986

    Article  CAS  Google Scholar 

  38. Sleep J, Lewalle A, Smith D (2006) Reconciling the working strokes of a single head of skeletal muscle myosin estimated from laser-trap experiments and crystal structures. Proc Natl Acad Sci U S A 103:1278–1282

    Article  CAS  Google Scholar 

  39. Chen C, Greenberg MJ, Laakso JM, Ostap EM, Goldman YE, Shuman H (2012) Kinetic schemes for post-synchronized single molecule dynamics. Biophys J 102:L23–L25

    Article  CAS  Google Scholar 

  40. Laakso JM, Lewis JH, Shuman H, Ostap EM (2010) Control of myosin-I force sensing by alternative splicing. Proc Natl Acad Sci U S A 107:698–702

    Article  CAS  Google Scholar 

  41. Lewis JH, Greenberg MJ, Laakso JM, Shuman H, Ostap EM (2012) Calcium regulation of myosin-I tension sensing. Biophys J 102:2799–2807

    Article  CAS  Google Scholar 

  42. Kad NM, Patlak JB, Fagnant PM, Trybus KM, Warshaw DM (2007) Mutation of a conserved glycine in the SH1-SH2 helix affects the load-dependent kinetics of myosin. Biophys J 92:1623–1631

    Article  CAS  Google Scholar 

  43. Takagi Y, Shuman H, Goldman YE (2004) Coupling between phosphate release and force generation in muscle actomyosin. Phil Trans Roy Soc Lond Ser B Biol Sci 359:1913–1920

    Article  CAS  Google Scholar 

  44. Sung J, Nag S, Mortensen KI, Vestergaard CL, Sutton S, Ruppel K, Flyvbjerg H, Spudich JA (2015) Harmonic force spectroscopy measures load-dependent kinetics of individual human beta-cardiac myosin molecules. Nat Commun 6:7931

    Article  CAS  Google Scholar 

  45. Sweeney HL, Park H, Zong AB, Yang Z, Selvin PR, Rosenfeld SS (2007) How myosin VI coordinates its heads during processive movement. EMBO J 26:2682–2692

    Article  CAS  Google Scholar 

  46. Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200:618–627

    Article  CAS  Google Scholar 

  47. Capitanio M, Canepari M, Cacciafesta P, Lombardi V, Cicchi R, Maffei M, Pavone FS, Bottinelli R (2006) Two independent mechanical events in the interaction cycle of skeletal muscle myosin with actin. Proc Natl Acad Sci U S A 103:87–92

    Article  CAS  Google Scholar 

  48. Lewalle A, Steffen W, Stevenson O, Ouyang Z, Sleep J (2008) Single-molecule measurement of the stiffness of the rigor myosin head. Biophys J 94:2160–2169

    Article  CAS  Google Scholar 

  49. Kaya M, Higuchi H (2013) Stiffness, working stroke, and force of single-myosin molecules in skeletal muscle: elucidation of these mechanical properties via nonlinear elasticity evaluation. Cell Mol Life Sci 70:4275–4292

    Article  CAS  Google Scholar 

  50. Greenberg MJ, Shuman H, Ostap EM (2014) Inherent force-dependent properties of beta-cardiac myosin contribute to the force-velocity relationship of cardiac muscle. Biophys J 107:L41–L44

    Article  CAS  Google Scholar 

  51. Kielley WW, Bradley LB (1956) The relationship between sulfhydryl groups and the activation of myosin adenosinetriphosphatase. J Biol Chem 218:653–659

    CAS  Google Scholar 

  52. Rock RS, Rief M, Mehta AD, Spudich JA (2000) In vitro assays of processive myosin motors. Methods 22:373–381

    Article  CAS  Google Scholar 

  53. Lin T, Tang N, Ostap EM (2005) Biochemical and motile properties of Myo1b splice isoforms. J Biol Chem 280:41562–41567

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge grants from the National Institutes of Health (R01GM057247 and P01GM087253 to E.M.O. and R00HL123623 to M.J.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Greenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Greenberg, M.J., Shuman, H., Ostap, E.M. (2017). Measuring the Kinetic and Mechanical Properties of Non-processive Myosins Using Optical Tweezers. In: Gennerich, A. (eds) Optical Tweezers. Methods in Molecular Biology, vol 1486. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6421-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6421-5_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6419-2

  • Online ISBN: 978-1-4939-6421-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics