Skip to main content

Measurement of mRNA Poly(A) Tail Lengths in Drosophila Female Germ Cells and Germ-Line Stem Cells

  • Protocol
  • First Online:
Germline Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1463))

Abstract

mRNA regulation by poly(A) tail length variations plays an important role in many developmental processes. Recent advances have shown that, in particular, deadenylation (the shortening of mRNA poly(A) tails) is essential for germ-line stem cell biology in the Drosophila ovary. Therefore, a rapid and accurate method to analyze poly(A) tail lengths of specific mRNAs in this tissue is valuable. Several methods of poly(A) test (PAT) assays have been reported to measure mRNA poly(A) tail lengths in vivo. Here, we describe two of these methods (PAT and ePAT) that we have adapted for Drosophila ovarian germ cells and germ-line stem cells.

Aymeric Chartier and Willy Joly contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weill L, Belloc E, Bava FA, Mendez R (2012) Translational control by changes in poly(A) tail length: recycling mRNAs. Nat Struct Mol Biol 19:577–585

    Article  CAS  PubMed  Google Scholar 

  2. Benoit P, Papin C, Kwak JE, Wickens M, Simonelig M (2008) PAP- and GLD-2-type poly(A) polymerases are required sequentially in cytoplasmic polyadenylation and oogenesis in Drosophila. Development 135:1969–1979

    Article  CAS  PubMed  Google Scholar 

  3. Subtelny AO, Eichhorn SW, Chen GR, Sive H, Bartel DP (2014) Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508:66–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Temme C, Simonelig M, Wahle E (2014) Deadenylation of mRNA by the CCR4-NOT complex in Drosophila: molecular and developmental aspects. Front Genet 5:143

    Article  PubMed  PubMed Central  Google Scholar 

  5. Temme C, Zaessinger S, Meyer S, Simonelig M, Wahle E (2004) A complex containing the CCR4 and CAF1 proteins is involved in mRNA deadenylation in Drosophila. EMBO J 23:2862–2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Temme C, Zhang L, Kremmer E, Ihling C, Chartier A et al (2010) Subunits of the Drosophila CCR4-NOT complex and their roles in mRNA deadenylation. RNA 16:1356–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Joly W, Chartier A, Rojas-Rios P, Busseau I, Simonelig M (2013) The CCR4 deadenylase acts with Nanos and Pumilio in the fine-tuning of Mei-P26 expression to promote germline stem cell self-renewal. Stem Cell Rep 1:411–424

    Article  CAS  Google Scholar 

  8. Gilboa L, Lehmann R (2004) Repression of primordial germ cell differentiation parallels germ line stem cell maintenance. Curr Biol 14:981–986

    Article  CAS  PubMed  Google Scholar 

  9. Wang Z, Lin H (2004) Nanos maintains germline stem cell self-renewal by preventing differentiation. Science 303:2016–2019

    Article  CAS  PubMed  Google Scholar 

  10. Yan D, Neumuller RA, Buckner M, Ayers K, Li H et al (2014) A regulatory network of Drosophila germline stem cell self-renewal. Dev Cell 28:459–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Newton FG, Harris RE, Sutcliffe C, Ashe HL (2015) Coordinate post-transcriptional repression of Dpp-dependent transcription factors attenuates signal range during development. Development 142:3362–3373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jin Z, Xie T (2007) Dcr-1 maintains Drosophila ovarian stem cells. Curr Biol 17:539–544

    Article  CAS  PubMed  Google Scholar 

  13. Park JK, Liu X, Strauss TJ, McKearin DM, Liu Q (2007) The miRNA pathway intrinsically controls self-renewal of Drosophila germline stem cells. Curr Biol 17:533–538

    Article  CAS  PubMed  Google Scholar 

  14. Yang L, Chen D, Duan R, Xia L, Wang J et al (2007) Argonaute 1 regulates the fate of germline stem cells in Drosophila. Development 134:4265–4272

    Article  CAS  PubMed  Google Scholar 

  15. Braun JE, Huntzinger E, Izaurralde E (2012) A molecular link between miRISCs and deadenylases provides new insight into the mechanism of gene silencing by microRNAs. Cold Spring Harb Perspect Biol 4(12)

    Google Scholar 

  16. Chang H, Lim J, Ha M, Kim VN (2014) TAIL-seq: genome-wide determination of poly(A) tail length and 3′ end modifications. Mol Cell 53:1044–1052

    Article  CAS  PubMed  Google Scholar 

  17. Harrison PF, Powell DR, Clancy JL, Preiss T, Boag PR et al (2015) PAT-seq: a method to study the integration of 3′-UTR dynamics with gene expression in the eukaryotic transcriptome. RNA 21:1502–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Salles FJ, Richards WG, Strickland S (1999) Assaying the polyadenylation state of mRNAs. Methods 17:38–45

    Article  CAS  PubMed  Google Scholar 

  19. Janicke A, Vancuylenberg J, Boag PR, Traven A, Beilharz TH (2012) ePAT: a simple method to tag adenylated RNA to measure poly(A)-tail length and other 3′ RACE applications. RNA 18:1289–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chartier A, Klein P, Pierson S, Barbezier N, Gidaro T et al (2015) Mitochondrial dysfunction reveals the role of mRNA poly(A) tail regulation in oculopharyngeal muscular dystrophy pathogenesis. PLoS Genet 11:e1005092

    Article  PubMed  PubMed Central  Google Scholar 

  21. McKearin D, Ohlstein B (1995) A role for the Drosophila bag-of-marbles protein in the differentiation of cystoblasts from germline stem cells. Development 121:2937–2947

    CAS  PubMed  Google Scholar 

  22. Ohlstein B, McKearin D (1997) Ectopic expression of the Drosophila Bam protein eliminates oogenic germline stem cells. Development 124:3651–3662

    CAS  PubMed  Google Scholar 

  23. Manseau L, Baradaran A, Brower D, Budhu A, Elefant F et al (1997) GAL4 enhancer traps expressed in the embryo, larval brain, imaginal discs, and ovary of Drosophila. Dev Dyn 209:310–322

    Article  CAS  PubMed  Google Scholar 

  24. Staehling-Hampton K, Hoffmann FM (1994) Ectopic decapentaplegic in the Drosophila midgut alters the expression of five homeotic genes, dpp, and wingless, causing specific morphological defects. Dev Biol 164:502–512

    Article  CAS  PubMed  Google Scholar 

  25. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R et al (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71–W74

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kai T, Williams D, Spradling AC (2005) The expression profile of purified Drosophila germline stem cells. Dev Biol 283:486–502

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the Simonelig lab is supported by the CNRS UPR1142, ANR (ANR-2010-BLAN-1201 01 and ANR-15-CE12-0019-01), FRM (Equipe FRM 2013 DEQ20130326534), and AFM-Telethon (No 17110).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chartier, A., Joly, W., Simonelig, M. (2017). Measurement of mRNA Poly(A) Tail Lengths in Drosophila Female Germ Cells and Germ-Line Stem Cells. In: Buszczak, M. (eds) Germline Stem Cells. Methods in Molecular Biology, vol 1463. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-4017-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-4017-2_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-4015-8

  • Online ISBN: 978-1-4939-4017-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics