Skip to main content

Pediatric Rodent Models of Traumatic Brain Injury

  • Protocol
  • First Online:
Injury Models of the Central Nervous System

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1462))

Abstract

Due to a high incidence of traumatic brain injury (TBI) in children and adolescents, age-specific studies are necessary to fully understand the long-term consequences of injuries to the immature brain. Preclinical and translational research can help elucidate the vulnerabilities of the developing brain to insult, and provide model systems to formulate and evaluate potential treatments aimed at minimizing the adverse effects of TBI. Several experimental TBI models have therefore been scaled down from adult rodents for use in juvenile animals. The following chapter discusses these adapted models for pediatric TBI, and the importance of age equivalence across species during model development and interpretation. Many neurodevelopmental processes are ongoing throughout childhood and adolescence, such that neuropathological mechanisms secondary to a brain insult, including oxidative stress, metabolic dysfunction and inflammation, may be influenced by the age at the time of insult. The long-term evaluation of clinically relevant functional outcomes is imperative to better understand the persistence and evolution of behavioral deficits over time after injury to the developing brain. Strategies to modify or protect against the chronic consequences of pediatric TBI, by supporting the trajectory of normal brain development, have the potential to improve quality of life for brain-injured children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faul M, Xu L, Wald MM, Coronado VG (2010) Traumatic brain injury in the United States: Emergency department visits, hospitalizations and deaths 2002-2006. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control Atlanta, GA

    Google Scholar 

  2. Thurman DJ (2014) The epidemiology of traumatic brain injury in children and youths: a review of research since 1990. J Child Neurol 31:20–27

    Article  PubMed  Google Scholar 

  3. Langlois JA (2000) Traumatic brain injury in the United States: assessing outcomes in children: summary and recommendations from the Expert Working Group, October 26-27. Division of Acute Care, Rehabilitation Research and Disability Prevention, National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Department of Health and Human Services. Atlanta, GA

    Google Scholar 

  4. Anderson V, Catroppa C, Morse S, Haritou F, Rosenfeld J (2005) Functional plasticity or vulnerability after early brain injury? Pediatrics 116:1374–1382

    Article  PubMed  Google Scholar 

  5. Anderson V, Jacobs R, Spencer-Smith M, Coleman L, Anderson P, Williams J, Greenham M, Leventer R (2010) Does early age at brain insult predict worse outcome? Neuropsychological implications. J Pediatr Psychol 35:716–727

    Article  PubMed  Google Scholar 

  6. Robertson CM, Joffe AR, Moore AJ, Watt JM (2002) Neurodevelopmental outcome of young pediatric intensive care survivors of serious brain injury. Pediatr Crit Care Med 3:345–350

    Article  PubMed  Google Scholar 

  7. Luerssen TG, Klauber MR, Marshall LF (1988) Outcome from head injury related to patient’s age. A longitudinal prospective study of adult and pediatric head injury. J Neurosurg 68:409–416

    Article  CAS  PubMed  Google Scholar 

  8. Beauchamp MH, Anderson V (2013) Cognitive and psychopathological sequelae of pediatric traumatic brain injury. Handb Clin Neurol 112:913–920

    Article  CAS  PubMed  Google Scholar 

  9. Anderson VA, Spencer-Smith MM, Coleman L, Anderson PJ, Greenham M, Jacobs R, Lee KJ, Leventer RJ (2014) Predicting neurocognitive and behavioural outcome after early brain insult. Dev Med Child Neurol 56:329–336

    Article  PubMed  Google Scholar 

  10. Choe MC, Valino H, Fischer J, Zeiger M, Breault J, McArthur DL, Leung M, Madikians A, Yudovin S, Lerner JT, Giza CC (2015) Targeting the epidemic: interventions and follow-up are necessary in the pediatric traumatic brain injury clinic. J Child Neurol 31:109–115

    Article  PubMed  Google Scholar 

  11. Verger K, Junque C, Levin HS, Jurado MA, Perez-Gomez M, Bartres-Faz D, Barrios M, Alvarez A, Bartumeus F, Mercader JM (2001) Correlation of atrophy measures on MRI with neuropsychological sequelae in children and adolescents with traumatic brain injury. Brain Inj 15:211–221

    Article  CAS  PubMed  Google Scholar 

  12. Serra-Grabulosa JM, Junque C, Verger K, Salgado-Pineda P, Maneru C, Mercader JM (2005) Cerebral correlates of declarative memory dysfunctions in early traumatic brain injury. J Neurol Neurosurg Psychiatry 76:129–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wilde EA, Hunter JV, Newsome MR, Scheibel RS, Bigler ED, Johnson JL, Fearing MA, Cleavinger HB, Li X, Swank PR, Pedroza C, Roberson GS, Bachevalier J, Levin HS (2005) Frontal and temporal morphometric findings on MRI in children after moderate to severe traumatic brain injury. J Neurotrauma 22:333–344

    Article  PubMed  Google Scholar 

  14. Wilde EA, Bigler ED, Hunter JV, Fearing MA, Scheibel RS, Newsome MR, Johnson JL, Bachevalier J, Li X, Levin HS (2007) Hippocampus, amygdala, and basal ganglia morphometrics in children after moderate-to-severe traumatic brain injury. Dev Med Child Neurol 49:294–299

    Article  PubMed  Google Scholar 

  15. Wilde EA, Merkley TL, Bigler ED, Max JE, Schmidt AT, Ayoub KW, McCauley SR, Hunter JV, Hanten G, Li X, Chu ZD, Levin HS (2012) Longitudinal changes in cortical thickness in children after traumatic brain injury and their relation to behavioral regulation and emotional control. Int J Dev Neurosci 30:267–276

    Article  PubMed  PubMed Central  Google Scholar 

  16. Beauchamp MH, Ditchfield M, Maller JJ, Catroppa C, Godfrey C, Rosenfeld JV, Kean MJ, Anderson VA (2011) Hippocampus, amygdala and global brain changes 10 years after childhood traumatic brain injury. Int J Dev Neurosci 29:137–143

    Article  CAS  PubMed  Google Scholar 

  17. Keightley ML, Sinopoli KJ, Davis KD, Mikulis DJ, Wennberg R, Tartaglia MC, Chen JK, Tator CH (2014) Is there evidence for neurodegenerative change following traumatic brain injury in children and youth? A scoping review. Front Hum Neurosci 8:139

    Article  PubMed  PubMed Central  Google Scholar 

  18. Giza CC, Mink RB, Madikians A (2007) Pediatric traumatic brain injury: not just little adults. Curr Opin Crit Care 13:143–152

    Article  PubMed  Google Scholar 

  19. Pinto PS, Poretti A, Meoded A, Tekes A, Huisman TA (2012) The unique features of traumatic brain injury in children. Review of the characteristics of the pediatric skull and brain, mechanisms of trauma, patterns of injury, complications and their imaging findings—part 1. J Neuroimag 22:e1–e17

    Article  Google Scholar 

  20. Romijn HJ, Hofman MA, Gramsbergen A (1991) At what age is the developing cerebral cortex of the rat comparable to that of the full-term newborn human baby? Early Hum Dev 26:61–67

    Article  CAS  PubMed  Google Scholar 

  21. Prins ML, Hovda DA (2003) Developing experimental models to address traumatic brain injury in children. J Neurotrauma 20:123–137

    Article  PubMed  Google Scholar 

  22. Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ (2013) Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 106–107:1–16

    Article  PubMed  Google Scholar 

  23. Dixon CE, Lyeth BG, Povlishock JT, Findling RL, Hamm RJ, Marmarou A, Young HF, Hayes RL (1987) A fluid percussion model of experimental brain injury in the rat. J Neurosurg 67:110–119

    Article  CAS  PubMed  Google Scholar 

  24. Thompson HJ, Lifshitz J, Marklund N, Grady MS, Graham DI, Hovda DA, McIntosh TK (2005) Lateral fluid percussion brain injury: a 15-year review and evaluation. J Neurotrauma 22:42–75

    Article  PubMed  Google Scholar 

  25. McIntosh TK, Vink R, Noble L, Yamakami I, Fernyak S, Soares H, Faden AL (1989) Traumatic brain injury in the rat: characterization of a lateral fluid-percussion model. Neuroscience 28:233–244

    Article  CAS  PubMed  Google Scholar 

  26. Prins ML, Lee SM, Cheng CL, Becker DP, Hovda DA (1996) Fluid percussion brain injury in the developing and adult rat: a comparative study of mortality, morphology, intracranial pressure and mean arterial blood pressure. Brain Res Dev Brain Res 95:272–282

    Article  CAS  PubMed  Google Scholar 

  27. Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K (1994) A new model of diffuse brain injury in rats. Part I: pathophysiology and biomechanics. J Neurosurg 80:291–300

    Article  CAS  PubMed  Google Scholar 

  28. Feeney DM, Boyeson MG, Linn RT, Murray HM, Dail WG (1981) Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res 211:67–77

    Article  CAS  PubMed  Google Scholar 

  29. Adelson PD, Dixon CE, Kochanek PM (2000) Long-term dysfunction following diffuse traumatic brain injury in the immature rat. J Neurotrauma 17:273–282

    Article  CAS  PubMed  Google Scholar 

  30. Adelson PD, Whalen MJ, Kochanek PM, Robichaud P, Carlos TM (1998) Blood brain barrier permeability and acute inflammation in two models of traumatic brain injury in the immature rat: a preliminary report. Acta Neurochir Suppl 71:104–106

    CAS  PubMed  Google Scholar 

  31. Huh JW, Widing AG, Raghupathi R (2008) Midline brain injury in the immature rat induces sustained cognitive deficits, bihemispheric axonal injury and neurodegeneration. Exp Neurol 213:84–92

    Article  PubMed  PubMed Central  Google Scholar 

  32. Huh JW, Widing AG, Raghupathi R (2011) Differential effects of injury severity on cognition and cellular pathology after contusive brain trauma in the immature rat. J Neurotrauma 28:245–257

    Article  PubMed  PubMed Central  Google Scholar 

  33. Adelson PD, Jenkins LW, Hamilton RL, Robichaud P, Tran MP, Kochanek PM (2001) Histopathologic response of the immature rat to diffuse traumatic brain injury. J Neurotrauma 18:967–976

    Article  CAS  PubMed  Google Scholar 

  34. Adelson PD, Fellows-Mayle W, Kochanek PM, Dixon CE (2013) Morris water maze function and histologic characterization of two age-at-injury experimental models of controlled cortical impact in the immature rat. Child’s Nerv Syst 29:43–53

    Article  Google Scholar 

  35. Osier, N. D., Korpon, J. R., & Dixon, C. E. (2015) Controlled cortical impact model. In: Kobeissy, F. H. ed. Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects, Boca Raton (FL), pp 421–428

    Google Scholar 

  36. Ajao DO, Pop V, Kamper JE, Adami A, Rudobeck E, Huang L, Vlkolinsky R, Hartman RE, Ashwal S, Obenaus A, Badaut J (2012) Traumatic brain injury in young rats leads to progressive behavioral deficits coincident with altered tissue properties in adulthood. J Neurotrauma 29:2060–2074

    Article  PubMed  PubMed Central  Google Scholar 

  37. Card JP, Santone DJ Jr, Gluhovsky MY, Adelson PD (2005) Plastic reorganization of hippocampal and neocortical circuitry in experimental traumatic brain injury in the immature rat. J Neurotrauma 22:989–1002

    Article  PubMed  Google Scholar 

  38. Semple BD, Canchola SA, Noble-Haeusslein L (2012) Deficits in social behavior emerge during development after pediatric traumatic brain injury in mice. J Neurotrauma 29:2672–2683

    Article  PubMed  PubMed Central  Google Scholar 

  39. Semple BD, Noble-Haeusslein LJ, Kwon YJ, Sam PN, Gibson AM, Grissom S, Brown S, Adahman Z, Hollingsworth CA, Kwakye A, Gimlin K, Wilde EA, Hanten G, Levin HS, Schenk AK (2014) Sociosexual and communication deficits after traumatic injury to the developing murine brain. PLoS One 9(8):e103386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Tong W, Igarashi T, Ferriero DM, Noble LJ (2002) Traumatic brain injury in the immature mouse brain: characterization of regional vulnerability. Exp Neurol 176:105–116

    Article  PubMed  Google Scholar 

  41. Pullela R, Raber J, Pfankuch T, Ferriero DM, Claus CP, Koh S-E, Yamauchi T, Rola R, Fike JR, Noble-Haeusslein LJ (2006) Traumatic injury to the immature brain results in progressive neuronal loss, hyperactivity and delayed cognitive impairments. Dev Neurosci 28:396–409

    Article  CAS  PubMed  Google Scholar 

  42. Chen CY, Noble-Haeusslein LJ, Ferriero D, Semple BD (2013) Traumatic injury to the immature frontal lobe: a new murine model of long-term motor impairment in the absence of psychosocial or cognitive deficits. Dev Neurosci 35:474–490

    PubMed  PubMed Central  Google Scholar 

  43. Kamper JE, Pop V, Fukuda AM, Ajao DO, Hartman RE, Babaut J (2013) Juvenile traumatic brain injury evolves into a chronic brain disorder: behavioral and histological changes over 6 months. Exp Neurol 250:8–19

    Article  PubMed  PubMed Central  Google Scholar 

  44. Prins ML, Alexander D, Giza CC, Hovda DA (2013) Repeated mild traumatic brain injury: mechanisms of cerebral vulnerability. J Neurotrauma 30:30–38

    Article  PubMed  PubMed Central  Google Scholar 

  45. Prins ML, Hales A, Reger M, Giza CC, Hovda DA (2010) Repeat traumatic brain injury in the juvenile rat is associated with increased axonal injury and cognitive impairments. Dev Neurosci 32:510–518

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mychasiuk R, Farran A, Angoa-Perez M, Briggs D, Kuhn D, Esser MJ (2014) A novel model of mild traumatic brain injury for juvenile rats. J Vis Exp (94)

    Google Scholar 

  47. Mychasiuk R, Farran A, Esser MJ (2014) Assessment of an experimental rodent model of pediatric mild traumatic brain injury. J Neurotrauma 31:749–757

    Article  PubMed  Google Scholar 

  48. Mychasiuk R, Hehar H, Esser MJ (2015) A mild traumatic brain injury (mTBI) induces secondary attention-deficit hyperactivity disorder-like symptomology in young rats. Behav Brain Res 286:285–292

    Article  PubMed  Google Scholar 

  49. Mychasiuk R, Hehar H, Ma I, Kolb B, Esser MJ (2015) The development of lasting impairments: a mild pediatric brain injury alters gene expression, dendritic morphology, and synaptic connectivity in the prefrontal cortex of rats. Neuroscience 288:145–155

    Article  CAS  PubMed  Google Scholar 

  50. Goddeyne C, Nichols J, Wu C, Anderson T (2015) Repetitive mild traumatic brain injury induces ventriculomegaly and cortical thinning in juvenile rats. J Neurophysiol 113:3268–3280. doi:10.1152/jn.00970.2014

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kane MJ, Angoa-Pérez M, Briggs DI, Viano DC, Kreipke CW, Kuhn DM (2012) A mouse model of human repetitive mild traumatic brain injury. J Neurosci Methods 203:41–49

    Article  PubMed  Google Scholar 

  52. Albaugh MD, Orr C, Nickerson JP, Zweber C, Slauterbeck JR, Hipko S, Gonyea J, Andrews T, Brackenbury JC, Watts R, Hudziak JJ (2015) Postconcussion symptoms are associated with cerebral cortical thickness in healthy collegiate and preparatory school ice hockey players. J Pediatr 166:394–400.e1

    Article  PubMed  Google Scholar 

  53. Fijalkowski RJ, Stemper BD, Pintar FA, Yoganandan N, Crowe MJ, Gennarelli TA (2007) New rat model for diffuse brain injury using coronal plane angular acceleration. J Neurotrauma 24:1387–1398

    Article  PubMed  Google Scholar 

  54. Guskiewicz KM, McCrea M, Marshall SW, Cantu RC, Randolph C, Barr W, Onate JA, Kelly JP (2003) Cumulative effects associated with recurrent concussion in collegiate football players: the NCAA Concussion Study. JAMA 290:2549–2555

    Article  CAS  PubMed  Google Scholar 

  55. DeWitt DS, Perez-Polo R, Hulsebosch CE, Dash PK, Robertson CS (2013) Challenges in the development of rodent models of mild traumatic brain injury. J Neurotrauma 30:688–701

    Article  PubMed  Google Scholar 

  56. Rice D, Barone SJ (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108:511–533

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kernie SG, Parent JM (2010) Forebrain neurogenesis after focal ischemic and traumatic brain injury. Neurobiol Dis 37:267–274

    Article  PubMed  Google Scholar 

  58. Covey MV, Jiang Y, Alli VV, Yang Z, Levison SW (2010) Defining the critical period for neocortical neurogenesis after pediatric brain injury. Dev Neurosci 32:488–498

    CAS  PubMed  Google Scholar 

  59. Sun D, Colello RJ, Daugherty WP, Kwon TH, McGinn MJ, Harvey HB, Bullock MR (2005) Cell proliferation and neuronal differentiation in the dentate gyrus in juvenile and adult rats following traumatic brain injury. J Neurotrauma 22:95–105

    Article  PubMed  Google Scholar 

  60. Goodus MT, Guzman AM, Calderon F, Jiang Y, Levison SW (2015) Neural stem cells in the immature, but not the mature subventricular zone respond robustly to traumatic brain injury. Dev Neurosci 37:29–42

    Article  CAS  PubMed  Google Scholar 

  61. Blaiss CA, Yu TS, Zhang G, Chen J, Dimchev G, Parada LF, Powell CM, Kernie SG (2011) Temporally specified genetic ablation of neurogenesis impairs cognitive recovery after traumatic brain injury. J Neurosci 31:4906–4916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sun D, Daniels TE, Rolfe A, Waters M, Hamm R (2015) Inhibition of injury-induced cell proliferation in the dentate gyrus of the hippocampus impairs spontaneous cognitive recovery after traumatic brain injury. J Neurotrauma 32:495–505

    Article  PubMed  PubMed Central  Google Scholar 

  63. Low LK, Cheng HJ (2006) Axon pruning: an essential step underlying the developmental plasticity of neuronal connections. Philos Trans R Soc Lond B Biol Sci 361:1531–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Herschkowitz N, Kagan J, Zilles K (1997) Neurobiological bases of behavioral development in the first year. Neuropediatrics 28:296–306

    Article  CAS  PubMed  Google Scholar 

  65. Huttenlocher PR (1979) Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Res 163:195–205

    Article  CAS  PubMed  Google Scholar 

  66. Crain B, Cotman C, Taylor D, Lynch G (1973) A quantitative electron microscopic study of synaptogenesis in the dentate gyrus of the rat. Brain Res 63:195–204

    Article  CAS  PubMed  Google Scholar 

  67. Casella EM, Thomas TC, Vanino DL, Fellows-Mayle W, Lifshitz J, Card JP, Adelson PD (2014) Traumatic brain injury alters long-term hippocampal neuron morphology in juvenile, but not immature, rats. Child’s Nerv Syst 30:1333–1342

    Article  Google Scholar 

  68. Nichols J, Perez RS, Wu C, Adelson PD, Anderson T (2014) Traumatic brain injury induces rapid enhancement of cortical excitability in juvenile rats. CNS Neurosci Ther 21:193–203

    Article  PubMed  Google Scholar 

  69. Scheff SW, Benardo LS, Cotman CW (1980) Decline in reactive fiber growth in the dentate gyrus of aged rats compared to young adult rats following entorhinal cortex removal. Brain Res 199:21–38

    Article  CAS  PubMed  Google Scholar 

  70. McWilliams JR, Lynch G (1983) Rate of synaptic replacement in denervated rat hippocampus declines precipitously from the juvenile period to adulthood. Science 221:572–574

    Article  CAS  PubMed  Google Scholar 

  71. Statler KD, Scheerlinck P, Pouliot W, Hamilton M, White HS, Dudek FE (2009) A potential model of pediatric posttraumatic epilepsy. Epilepsy Res 86:221–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li N, Yang Y, Glover DP, Zhang J, Saraswati M, Robertson C, Pelled G (2014) Evidence for impaired plasticity after traumatic brain injury in the developing brain. J Neurotrauma 31:395–403

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ellis TWJ, Ziebell JM, Adelson PD, Lifshitz J (2014) Commentary on Kamper et al., juvenile traumatic brain injury evolves into a chronic brain disorder: the challenges in longitudinal studies of juvenile traumatic brain injury. Exp Neurol 261:434–439

    Article  PubMed  Google Scholar 

  74. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Rapoport JL (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863

    Article  CAS  PubMed  Google Scholar 

  75. Ewing-Cobbs L, Prasad MR, Swank P, Kramer L, Cox CS Jr, Fletcher JM, Barnes M, Zhang X, Hasan KM (2008) Arrested development and disrupted callosal microstructure following pediatric traumatic brain injury: relation to neurobehavioral outcomes. Neuroimage 42:1305–1315

    Article  PubMed  PubMed Central  Google Scholar 

  76. Tasker RC (2006) Changes in white matter late after severe traumatic brain injury in childhood. Dev Neurosci 28:302–308

    Article  CAS  PubMed  Google Scholar 

  77. Bigler ED, Abildskov TJ, Petrie J, Farrer TJ, Dennis M, Simic N, Taylor HG, Rubin KH, Vannatta K, Gerhardt CA, Stancin T, Owen Yeates K (2013) Heterogeneity of brain lesions in pediatric traumatic brain injury. Neuropsychology 27:438–451

    Article  PubMed  Google Scholar 

  78. Bittigau P, Sifringer M, Felderhoff-Mueser U, Ikonomidou C (2004) Apoptotic neurodegeneration in the context of traumatic injury to the developing brain. Exp Toxicol Pathol 56:83–89

    Article  PubMed  Google Scholar 

  79. Ikonomidou C, Qin Y, Labruyere J, Kirby C, Olney JW (1996) Prevention of trauma-induced neurodegeneration in infant rat brain. Pediatr Res 39:1020–1027

    Article  CAS  PubMed  Google Scholar 

  80. Anthony DC, Bolton SJ, Fearn S, Perry VH (1997) Age-related effects of interleukin-1 beta on polymorphonuclear neutrophil-dependent increases in blood-brain barrier permeability in rats. Brain 120:435–444

    Article  PubMed  Google Scholar 

  81. Anthony D, Dempster R, Fearn S, Clements J, Wells G, Perry VH, Walker K (1998) CXC chemokines generate age-related increases in neutrophil-mediated brain inflammation and blood-brain barrier breakdown. Curr Biol 8:923–926

    Article  CAS  PubMed  Google Scholar 

  82. Claus CP, Tsuru-Aoyagi K, Adwanikar H, Walker B, Whetstone W, Noble-Haeusslein LJ (2010) Age is a determinant of the inflammatory response and loss of cortical volume after traumatic brain injury. Dev Neurosci 32:454–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Potts M, Koh S-E, Whetstone W, Walker B, Yoneyama T, Claus C, Manvelyan H, Noble-Haeusslein L (2006) Traumatic injury to the immature brain: inflammation, oxidative injury, and iron-mediated damage as potential therapeutic targets. Neuroreport 3:143–153

    CAS  Google Scholar 

  84. Chang EF, Claus CP, Vreman HJ, Wong RJ, Noble-Haeusslein LJ (2005) Heme regulation in traumatic brain injury: relevance to the adult and developing brain. J Cereb Blood Flow Metab 25:1401–1417

    Article  CAS  PubMed  Google Scholar 

  85. Fan P, Yamauchi T, Noble L, Ferriero D (2003) Age-dependent differences in glutathione peroxidase activity after traumatic brain injury. J Neurotrauma 20:437–445

    Article  PubMed  Google Scholar 

  86. Tsuru-Aoyagi K, Potts M, Trivedi A, Pfankuch T, Raber J, Wendland M, Claus C, Koh S-E, Ferriero D, Noble-Haeusslein L (2009) Glutathione peroxidase activity modulates recovery in the injured immature brain. Ann Neurol 65:540–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ashwal S, Holshouser BA, Shu SK, Simmons PL, Perkin RM, Tomasi LG, Knierim DS, Sheridan C, Craig K, Andrews GH, Hinshaw DB (2000) Predictive value of proton magnetic resonance spectroscopy in pediatric closed head injury. Pediatr Neurol 23:114–125

    Article  CAS  PubMed  Google Scholar 

  88. Holshouser BA, Ashwal S, Luh GY, Shu S, Kahlon S, Auld KL, Tomasi LG, Perkin RM, Hinshaw DB Jr (1997) Proton MR spectroscopy after acute central nervous system injury: outcome prediction in neonates, infants, and children. Radiology 202:487–496

    Article  CAS  PubMed  Google Scholar 

  89. Robertson CL, Saraswati M, Scafidi S, Fiskum G, Casey P, McKenna MC (2013) Cerebral glucose metabolism in an immature rat model of pediatric traumatic brain injury. J Neurotrauma 30:2066–2072

    Article  PubMed  PubMed Central  Google Scholar 

  90. Casey PA, McKenna MC, Fiskum G, Saraswati M, Robertson CL (2008) Early and sustained alterations in cerebral metabolism after traumatic brain injury in immature rats. J Neurotrauma 25:603–614

    Article  PubMed  PubMed Central  Google Scholar 

  91. Scafidi S, O'Brien J, Hopkins I, Robertson C, Fiskum G, McKenna M (2009) Delayed cerebral oxidative glucose metabolism after traumatic brain injury in young rats. J Neurochem 109(Suppl 1):189–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Robertson CL, Saraswati M, Fiskum G (2007) Mitochondrial dysfunction early after traumatic brain injury in immature rats. J Neurochem 101:1248–1257

    Article  CAS  PubMed  Google Scholar 

  93. Nehlig A, Boyet S, Pereira de Vasconcelos A (1991) Autoradiographic measurement of local cerebral beta-hydroxybutyrate uptake in the rat during postnatal development. Neuroscience 40:871–878

    Article  CAS  PubMed  Google Scholar 

  94. Prins ML, Matsumoto J (2014) Metabolic response of pediatric traumatic brain injury. J Child Neurol 31:28–34

    Article  PubMed  Google Scholar 

  95. Deng-Bryant Y, Prins ML, Hovda DA, Harris NG (2011) Ketogenic diet prevents alterations in brain metabolism in young but not adult rats after traumatic brain injury. J Neurotrauma 28:1813–1825

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gold EM, Su D, López-Velázquez L, Haus DL, Perez H, Lacuesta GA, Anderson AJ, Cummings BJ (2013) Functional assessment of long-term deficits in rodent models of traumatic brain injury. Regen Med 8:483–516

    Article  CAS  PubMed  Google Scholar 

  97. Karver CL, Wade SL, Cassedy A, Taylor HG, Stancin T, Yeates KO, Walz NC (2012) Age at injury and long-term behavior problems after traumatic brain injury in young children. Rehabil Psychol 57:256–265

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kieslich M, Marquardt G, Galow G, Lorenz R, Jacobi G (2001) Neurological and mental outcome after severe head injury in childhood: a long-term follow-up of 318 children. Disabil Rehabil 23:665–669

    Article  CAS  PubMed  Google Scholar 

  99. Koskiniemi M, Kyykkä T, Nybo T, Jarho L (1995) Long-term outcome after severe brain injury in preschoolers is worse than expected. Arch Pediatr Adolesc Med 149:249–254

    Article  CAS  PubMed  Google Scholar 

  100. McKinlay A, Grace RC, Horwood LJ, Fergusson DM, Macfarlane MR (2010) Long-term behavioural outcomes of pre-school mild traumatic brain injury. Child Care Health Dev 36:22–30

    Article  CAS  PubMed  Google Scholar 

  101. Ryan NP, Anderson V, Godfrey C, Beauchamp MH, Coleman L, Eren S, Rosema S, Taylor K, Catroppa C (2013) Predictors of very long-term socio-cognitive function after pediatric traumatic brain injury: support for the vulnerability of the immature ‘social brain’. J Neurotrauma 31:649–657

    Article  PubMed  Google Scholar 

  102. Babikian T, Asarnow R (2009) Neurocognitive outcomes and recovery after pediatric TBI: meta-analytic review of the literature. Neuropsychology 23:283–296

    Article  PubMed  PubMed Central  Google Scholar 

  103. Giza CC, Kolb B, Harris NG, Asarnow RF, Prins ML (2009) Hitting a moving target: basic mechanisms of recovery from acquired developmental brain injury. Dev Neurorehabil 12:255–268

    Article  PubMed  PubMed Central  Google Scholar 

  104. Lapchak PA, Zhang JH, Noble-Haeusslein LJ (2013) RIGOR Guidelines: escalating STAIR and STEPS for effective translational research. Transl Stroke Res 4:279–285

    Article  PubMed  Google Scholar 

  105. Kercmar J, Tobet SA, Majdic G (2014) Social isolation during puberty affects female sexual behavior in mice. Front Behav Neurosci 8:337

    Article  PubMed  PubMed Central  Google Scholar 

  106. Venna VR, Xu Y, Doran SJ, Patrizz A, McCullough LD (2014) Social interaction plays a critical role in neurogenesis and recovery after stroke. Transl Psychiatry 4:e351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chabout J, Serreau P, Ey E, Bellier L, Aubin T, Bourgeron T, Granon S (2012) Adult male mice emit context-specific ultrasonic vocalizations that are modulated by prior isolation or group-rearing environment. PLoS One 7:e29401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kaidanovich-Beilin O, Lipina T, Vukobradovic I, Roder J, Woodgett JR (2011) Assessment of social interaction behaviors. J Vis Exp (48):2473. doi:10.3791/2473

    Google Scholar 

  109. Terranova ML, Laviola G (2005) Scoring of social interactions and play in mice during adolescence. Curr Prot Toxicol Chapter 13:13.10.1–13.10.11

    Google Scholar 

  110. Schenk F (1985) Development of place navigation in rats from weaning to puberty. Behav Neural Biol 43:69–85

    Article  CAS  PubMed  Google Scholar 

  111. Prins ML, Hovda DA (1998) Traumatic brain injury in the developing rat: effects of maturation on Morris water maze acquisition. J Neurotrauma 15:799–811

    Article  CAS  PubMed  Google Scholar 

  112. Mychasiuk R, Hehar H, Farran A, Esser MJ (2014) Mean girls: sex differences in the effects of mild traumatic brain injury on the social dynamics of juvenile rat play behaviour. Behav Brain Res 259:284–291

    Article  CAS  PubMed  Google Scholar 

  113. Russell KL, Kutchko KM, Fowler SC, Berman NEJ, Levant B (2011) Sensorimotor behavioral tests for use in a juvenile rat model of traumatic brain injury: assessment of sex differences. J Neurosci Methods 199:214–222

    Article  PubMed  PubMed Central  Google Scholar 

  114. Slewa-Younan S, van den Berg S, Baguley IJ, Nott M, Cameron ID (2008) Towards an understanding of sex differences in functional outcome following moderate to severe traumatic brain injury: a systematic review. J Neurol Neurosurg Psychiatry 79:1197–1201

    Article  CAS  PubMed  Google Scholar 

  115. Guevara R, Gianotti M, Oliver J, Roca P (2011) Age and sex-related changes in rat brain mitochondrial oxidative status. Exp Gerontol 46:923–928

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This review was supported by NIH/NINDS R01 NS050159 and NS077767.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda J. Noble-Haeusslein Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Semple, B.D., Carlson, J., Noble-Haeusslein, L.J. (2016). Pediatric Rodent Models of Traumatic Brain Injury. In: Kobeissy, F., Dixon, C., Hayes, R., Mondello, S. (eds) Injury Models of the Central Nervous System. Methods in Molecular Biology, vol 1462. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3816-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3816-2_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3814-8

  • Online ISBN: 978-1-4939-3816-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics