Skip to main content

Kymographic Analysis of Transport in an Individual Neuronal Sensory Cilium in Caenorhabditis elegans

  • Protocol
  • First Online:
Cilia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1454))

Abstract

Intraflagellar Transport (IFT) is driven by molecular motors that travel upon microtubule-based ciliary axonemes. In the single-celled alga Chlamydomonas reinhardtii, movement of a single anterograde IFT motor, heterotrimeric kinesin-II, is required to generate two identical motile flagella. The function of this canonical anterograde IFT motor is conserved among all eukaryotes, yet multicellular organisms can generate cilia of diverse structures and functions, ranging from simple threadlike non-motile primary cilia to the elaborate cilia that make up rod and cone photoreceptors in the retina. An emerging theme is that additional molecular motors modulate the canonical IFT machinery to give rise to differing ciliary morphologies. Therefore, a complete understanding of the trafficking of ciliary receptors, as well as the biogenesis, maintenance, specialization, and function of cilia, requires the characterization of motor molecules.

Here, we describe in detail our method for measuring the motility of proteins in cilia or dendrites of C. elegans male-specific CEM ciliated sensory neurons using time-lapse microscopy and kymography of green fluorescent protein (GFP)-tagged motors, receptors, and cargos. We describe, as a specific example, OSM-3::GFP puncta moving in cilia, but also include (Fig. 1) with settings that have worked well for us measuring movement of heterotrimeric kinesin-II, IFT particles, and the polycystin TRP channel PKD-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL (1993) A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci U S A 90(12):5519–5523

    Article  CAS  PubMed Central  Google Scholar 

  2. Pedersen LB, Geimer S, Rosenbaum JL (2006) Dissecting the molecular mechanisms of intraflagellar transport in Chlamydomonas. Curr Biol 16(5):450–459. doi:10.1016/j.cub.2006.02.020

    Article  CAS  Google Scholar 

  3. Cole DG, Diener DR, Himelblau AL, Beech PL, Fuster JC, Rosenbaum JL (1998) Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol 141(4):993–1008

    Article  CAS  PubMed Central  Google Scholar 

  4. Scholey JM (2008) Intraflagellar transport motors in cilia: moving along the cell's antenna. J Cell Biol 180(1):23–29

    Article  CAS  PubMed Central  Google Scholar 

  5. Inglis PN, Ou G, Leroux MR, Scholey JM (2006) The sensory cilia of Caenorhabditis elegans. WormBook:1–22

    Google Scholar 

  6. Ou G, Blacque OE, Snow JJ, Leroux MR, Scholey JM (2005) Functional coordination of intraflagellar transport motors. Nature 436(7050):583–587. doi:10.1038/nature03818

    Article  CAS  Google Scholar 

  7. Snow JJ, Ou G, Gunnarson AL, Walker MR, Zhou HM, Brust-Mascher I, Scholey JM (2004) Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nat Cell Biol 6(11):1109–1113. doi:10.1038/ncb1186

    Article  CAS  Google Scholar 

  8. Jenkins PM, Hurd TW, Zhang L, McEwen DP, Brown RL, Margolis B, Verhey KJ, Martens JR (2006) Ciliary targeting of olfactory CNG channels requires the CNGB1b subunit and the kinesin-2 motor protein, KIF17. Curr Biol 16(12):1211–1216. doi:10.1016/j.cub.2006.04.034

    Article  CAS  Google Scholar 

  9. Insinna C, Humby M, Sedmak T, Wolfrum U, Besharse JC (2009) Different roles for KIF17 and kinesin II in photoreceptor development and maintenance. Dev Dyn 238(9):2211–2222

    Article  CAS  PubMed Central  Google Scholar 

  10. Jiang L, Tam BM, Ying G, Wu S, Hauswirth WW, Frederick JM, Moritz OL, Baehr W (2015) Kinesin family 17 (osmotic avoidance abnormal-3) is dispensable for photoreceptor morphology and function. Faseb J. doi:10.1096/fj.15-275677

    Google Scholar 

  11. Miki H, Okada Y, Hirokawa N (2005) Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol 15(9):467–476. doi:10.1016/j.tcb.2005.07.006

    Article  CAS  Google Scholar 

  12. Morsci NS, Barr MM (2011) Kinesin-3 KLP-6 regulates intraflagellar transport in male-specific cilia of Caenorhabditis elegans. Curr Biol 21(14):1239–1244. doi:10.1016/j.cub.2011.06.027

    Article  CAS  PubMed Central  Google Scholar 

  13. Perkins LA, Hedgecock EM, Thomson JN, Culotti JG (1986) Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev Biol 117(2):456–487

    Article  CAS  Google Scholar 

  14. Mukhopadhyay S, Lu Y, Qin H, Lanjuin A, Shaham S, Sengupta P (2007) Distinct IFT mechanisms contribute to the generation of ciliary structural diversity in C. elegans. Embo J 26(12):2966–2980

    Article  CAS  PubMed Central  Google Scholar 

  15. O'Hagan R, Piasecki BP, Silva M, Phirke P, Nguyen KC, Hall DH, Swoboda P, Barr MM (2011) The tubulin deglutamylase CCPP-1 regulates the function and stability of sensory cilia in C. elegans. Curr Biol 21(20):1685–1694. doi:10.1016/j.cub.2011.08.049

    Article  PubMed Central  Google Scholar 

  16. Rand JB (2007) Acetylcholine. WormBook:1–21. doi:10.1895/wormbook.1.131.1

    Google Scholar 

  17. Qin H, Burnette DT, Bae YK, Forscher P, Barr MM, Rosenbaum JL (2005) Intraflagellar transport is required for the vectorial movement of TRPV channels in the ciliary membrane. Curr Biol 15(18):1695–1699

    Article  CAS  Google Scholar 

  18. Warburton-Pitt SR, Silva M, Nguyen KC, Hall DH, Barr MM (2014) The nphp-2 and arl-13 genetic modules interact to regulate ciliogenesis and ciliary microtubule patterning in C. elegans. PLoS Genet 10(12), e1004866. doi:10.1371/journal.pgen.1004866

    Google Scholar 

  19. Cevik S, Sanders AA, Van Wijk E, Boldt K, Clarke L, van Reeuwijk J, Hori Y, Horn N, Hetterschijt L, Wdowicz A, Mullins A, Kida K, Kaplan OI, van Beersum SE, Man Wu K, Letteboer SJ, Mans DA, Katada T, Kontani K, Ueffing M, Roepman R, Kremer H, Blacque OE (2013) Active transport and diffusion barriers restrict Joubert Syndrome-associated ARL13B/ARL-13 to an Inv-like ciliary membrane subdomain. PLoS Genet 9(12), e1003977. doi:10.1371/journal.pgen.1003977

    Article  PubMed Central  Google Scholar 

  20. Granato M, Schnabel H, Schnabel R (1994) pha-1, a selectable marker for gene transfer in C. elegans. Nucleic Acids Res 22(9):1762–1763

    Article  CAS  PubMed Central  Google Scholar 

  21. Barr MM, Sternberg PW (1999) A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401(6751):386–389

    CAS  Google Scholar 

  22. Barr MM, DeModena J, Braun D, Nguyen CQ, Hall DH, Sternberg PW (2001) The C. elegans autosomal dominant polycystic kidney disease gene homologs lov-1 and pkd-2 act in the same pathway. Curr Biol 11(17):1341–1346

    Google Scholar 

  23. Jauregui AR, Nguyen KC, Hall DH, Barr MM (2008) The C. elegans nephrocystins act as global modifiers of cilium structure. J Cell Biol 180(5):973–988

    Article  CAS  PubMed Central  Google Scholar 

  24. Prelich G (2012) Gene overexpression: uses, mechanisms, and interpretation. Genetics 190(3):841–854. doi:10.1534/genetics.111.136911

    Article  CAS  PubMed Central  Google Scholar 

  25. Frokjaer-Jensen C (2013) Exciting prospects for precise engineering of C. elegans genomes with CRISPR/Cas9. Genetics 195(3):635–642. doi:10.1534/genetics.113.156521

    Article  PubMed Central  Google Scholar 

  26. Bae YK, Qin H, Knobel KM, Hu J, Rosenbaum JL, Barr MM (2006) General and cell-type specific mechanisms target TRPP2/PKD-2 to cilia. Development 133(19):3859–3870

    Article  CAS  Google Scholar 

  27. O'Hagan R, Wang J, Barr MM (2014) Mating behavior, male sensory cilia, and polycystins in C. elegans. Seminars in Cell & Developmental Biology 33:25–33. doi:10.1016/j.semcdb.2014.06.001

    Article  Google Scholar 

  28. Wang J, Silva M, Haas LA, Morsci NS, Nguyen KC, Hall DH, Barr MM (2014) C. elegans ciliated sensory neurons release extracellular vesicles that function in animal communication. Curr Biol 24(5):519–525. doi:10.1016/j.cub.2014.01.002

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors were supported by NJCSCR Grant CSCR15IRG014 (R.O.) and NIH Grants DK059418 and DK074746 (M.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert O’Hagan Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

O’Hagan, R., Barr, M.M. (2016). Kymographic Analysis of Transport in an Individual Neuronal Sensory Cilium in Caenorhabditis elegans . In: Satir, P., Christensen, S. (eds) Cilia. Methods in Molecular Biology, vol 1454. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3789-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3789-9_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3787-5

  • Online ISBN: 978-1-4939-3789-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics