Skip to main content

Radioligand Binding Assays for Determining Dissociation Constants of Phytohormone Receptors

  • Protocol
  • First Online:
Plant Proteostasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1450))

Abstract

In receptor–ligand interactions, dissociation constants provide a key parameter for characterizing binding. Here, we describe filter-based radioligand binding assays at equilibrium, either varying ligand concentrations up to receptor saturation or outcompeting ligand from its receptor with increasing concentrations of ligand analogue. Using the auxin coreceptor system, we illustrate how to use a saturation binding assay to determine the apparent dissociation constant (K D ) for the formation of a ternary TIR1–auxin–AUX/IAA complex. Also, we show how to determine the inhibitory constant (K i) for auxin binding by the coreceptor complex via a competition binding assay. These assays can be applied broadly to characterize a one-site binding reaction of a hormone to its receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Jong LAA, Uges DRA, Franke JP, Bischoff R (2005) Receptor–ligand binding assays: technologies and applications. J Chromatogr B 829:1–25

    Article  Google Scholar 

  2. Nguyen H, Park J, Kang S, Kim M (2015) Surface plasmon resonance: a versatile technique for biosensor applications. Sensors 15:10481–10510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Velazquez-Campoy A, Freire E (2006) Isothermal titration calorimetry to determine association constants for high-affinity ligands. Nat Protoc 1:186–191

    Article  CAS  PubMed  Google Scholar 

  4. Rossi AM, Taylor CW (2011) Analysis of protein-ligand interactions by fluorescence polarization. Nat Protoc 6:365–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jerabek-Willemsen M, André T, Wanner R, Roth HM, Duhr S, Baaske P, Breitsprecher D (2014) Microscale thermophoresis: interaction analysis and beyond. J Mol Struct 1077:101–113

    Article  CAS  Google Scholar 

  6. Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  CAS  PubMed  Google Scholar 

  7. Bigott-Hennkens HM, Dannoon S, Lewis MR, Jurisson SS (2008) In vitro receptor binding assays: general methods and considerations. Q J Nucl Med Mol Imaging 52:245–253

    CAS  PubMed  Google Scholar 

  8. Bylund DB, Toews ML (1993) Radioligand binding methods: practical guide and tips. Am J Physiol 265:L421–L429

    CAS  PubMed  Google Scholar 

  9. Carter CM, Leighton-Davies JR, Charlton SJ (2007) Miniaturized receptor binding assays: complications arising from ligand depletion. J Biomol Screen 12:255–266

    Article  CAS  PubMed  Google Scholar 

  10. Hulme EC, Trevethick MA (2010) Ligand binding assays at equilibrium: validation and interpretation. Br J Pharmacol 161:1219–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maguire JJ, Kuc RE, Davenport AP (2012) Radioligand binding assays and their analysis. Methods Mol Biol 897:31–77

    Article  CAS  PubMed  Google Scholar 

  12. Motulsky HJ, Neubig RR (2010) Analyzing binding data. Curr Protoc Neurosci Chapter 7: Unit 7.5

    Google Scholar 

  13. Calderón Villalobos LI, Lee S, De Oliveira C, Ivetac A, Brandt W, Armitage L, Sheard LB, Tan X, Parry G, Mao H et al (2012) A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat Chem Biol 8:477–485

    Article  PubMed  Google Scholar 

  14. Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J (2001) BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410:380–383

    Article  CAS  PubMed  Google Scholar 

  15. Cano-Delgado A, Yin Y, Yu C, Vafeados D, Mora-Garcia S, Cheng JC, Nam KH, Li J, Chory J (2004) BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131:5341–5351

    Article  CAS  PubMed  Google Scholar 

  16. Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J et al (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Slaymaker DH, Navarre DA, Clark D, del Pozo O, Martin GB, Klessig DF (2002) The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc Natl Acad Sci U S A 99:11640–11645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Dong X (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228–232

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698

    Article  CAS  PubMed  Google Scholar 

  20. Soon FF, Suino-Powell KM, Li J, Yong EL, Xu HE, Melcher K (2012) Abscisic acid signaling: thermal stability shift assays as tool to analyze hormone perception and signal transduction. PLoS One 7:e47857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Calderón Villalobos LI, Tan X, Zheng N, Estelle M (2010) Auxin perception-structural insights. Cold Spring Harb Perspect Biol 2:a005546

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    Article  CAS  PubMed  Google Scholar 

  23. Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451

    Article  CAS  PubMed  Google Scholar 

  24. Chapman EJ, Estelle M (2009) Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet 43:265–285

    Article  CAS  PubMed  Google Scholar 

  25. Tan X, Calderón Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the IPB core funding from the Leibniz Association and the Deutsche Forschungsgemeinschaft (DFG) through the research grant CA716/2-1 to L.I.A.C.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luz Irina A. Calderón Villalobos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hellmuth, A., Calderón Villalobos, L.I.A. (2016). Radioligand Binding Assays for Determining Dissociation Constants of Phytohormone Receptors. In: Lois, L., Matthiesen, R. (eds) Plant Proteostasis. Methods in Molecular Biology, vol 1450. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3759-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3759-2_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3757-8

  • Online ISBN: 978-1-4939-3759-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics