Skip to main content

Analysis of Intracellular Ca2+ Mobilization in Human NK Cell Subsets by Flow Cytometry

  • Protocol
  • First Online:
Natural Killer Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1441))

Abstract

In signaling cascades downstream of NK cell activating receptor engagement, Ca2+ ions are pivotal second messengers for NK cell cytotoxicity as well as cytokine production. Upon cellular activation, intracellular mobilization of Ca2+ ions initially involves depletion of endoplasmic reticulum stores, leading to subsequent Ca2+ influx through specific plasma membrane Ca2+ release activated Ca2+ channels. Multiple probes and assays for detecting intracellular Ca2+ concentrations have been developed. With the advance of multiparameter flow cytometry instrumentation, a thorough analysis of signaling in specific NK cell subsets is possible. Here, a flow cytometric method for dynamic measurements of intracellular Ca2+ concentrations in human NK cells subsets is detailed and discussed. This assay can be further adapted for specific scientific and diagnostic questions, with implications for various immunopathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vivier E, Tomasello E, Baratin M et al (2008) Functions of natural killer cells. Nat Immunol 9:503–510

    Article  CAS  PubMed  Google Scholar 

  2. Bryceson Y, Long E (2008) Line of attack: NK cell specificity and integration of signals. Curr Opin Immunol 20:344–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Al-Aoukaty A, Rolstad B, Giaid A et al (1998) MIP-3alpha, MIP-3beta and fractalkine induce the locomotion and the mobilization of intracellular calcium, and activate the heterotrimeric G proteins in human natural killer cells. Immunology 95:618–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Upshaw JL, Schoon RA, Dick CJ et al (2005) The isoforms of phospholipase C-gamma are differentially used by distinct human NK activating receptors. J Immunol 175:213–218

    Article  CAS  PubMed  Google Scholar 

  5. Bryceson YT, March ME, Ljunggren H-G et al (2006) Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev 214:73–91

    Article  CAS  PubMed  Google Scholar 

  6. Regunathan J, Chen Y, Kutlesa S et al (2006) Differential and nonredundant roles of phospholipase Cgamma2 and phospholipase Cgamma1 in the terminal maturation of NK cells. J Immunol 177:5365–5376

    Article  CAS  PubMed  Google Scholar 

  7. Caraux A, Kim N, Bell SE et al (2006) Phospholipase C-gamma2 is essential for NK cell cytotoxicity and innate immunity to malignant and virally infected cells. Blood 107:994–1002

    Article  CAS  PubMed  Google Scholar 

  8. Tassi I, Presti R, Kim S et al (2005) Phospholipase C-gamma 2 is a critical signaling mediator for murine NK cell activating receptors. J Immunol 175:749–754

    Article  CAS  PubMed  Google Scholar 

  9. Bryceson YT, Chiang SCC, Darmanin S et al (2011) Molecular mechanisms of natural killer cell activation. J Innate Immun 3:216–226

    Article  CAS  PubMed  Google Scholar 

  10. Feske S, Gwack Y, Prakriya M et al (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185

    Article  CAS  PubMed  Google Scholar 

  11. Picard C, McCarl C-A, Papolos A et al (2009) STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N Engl J Med 360:1971–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maul-Pavicic A, Chiang SCC, Rensing-Ehl A et al (2011) ORAI1-mediated calcium influx is required for human cytotoxic lymphocyte degranulation and target cell lysis. Proc Natl Acad Sci U S A 108:3324–3329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  14. Anasetti C, Martin PJ, June CH et al (1987) Induction of calcium flux and enhancement of cytolytic activity in natural killer cells by cross-linking of the sheep erythrocyte binding protein (CD2) and the Fc-receptor (CD16). J Immunol 139:1772–1779

    CAS  PubMed  Google Scholar 

  15. Bryceson YT, March ME, Ljunggren HG et al (2006) Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 107:159–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Burchiel SW, Edwards BS, Kuckuck FW et al (2000) Analysis of free intracellular calcium by flow cytometry: multiparameter and pharmacologic applications. Methods 21:221–230

    Article  CAS  PubMed  Google Scholar 

  17. MacFarlane AW, Oesterling JF, Campbell KS (2010) Measuring intracellular calcium signaling in murine NK cells by flow cytometry. Methods Mol Biol 612:149–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Di Virgilio F, Steinberg TH, Silverstein SC (1990) Inhibition of Fura-2 sequestration and secretion with organic anion transport blockers. Cell Calcium 11:57–62

    Article  PubMed  Google Scholar 

  19. Anasetti C, Martin PJ, Morishita Y et al (1987) Human large granular lymphocytes express high affinity receptors for murine monoclonal antibodies of the IgG3 subclass. J Immunol 138:2979–2981

    CAS  PubMed  Google Scholar 

  20. Bootman MD, Rietdorf K, Collins T et al (2013) Ca2+-sensitive fluorescent dyes and intracellular Ca2+ imaging. Cold Spring Harb Protoc 8:83–99

    Google Scholar 

  21. June CH, Abe R, Rabinovitch PS (2001) Measurement of intracellular calcium ions by flow cytometry. Curr Protoc Cytom Chapter 9:Unit 9.8

    Google Scholar 

Download references

Acknowledgments

This work was supported by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement no. 311335, Swedish Research Council, Swedish Foundation for Strategic Research, Swedish Cancer Foundation, Swedish Children’s Cancer Foundation, Knut and Alice Wallenberg Foundation, and the Karolinska Institute Research Foundation. J.T. is supported by a researcher internship grant provided by the Stockholm County Government and a MD/PhD fellowship provided by Karolinska Institutet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yenan T. Bryceson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Theorell, J., Bryceson, Y.T. (2016). Analysis of Intracellular Ca2+ Mobilization in Human NK Cell Subsets by Flow Cytometry. In: Somanchi, S. (eds) Natural Killer Cells. Methods in Molecular Biology, vol 1441. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3684-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3684-7_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3682-3

  • Online ISBN: 978-1-4939-3684-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics