Skip to main content

Experimental Research on Hand Use and Function in Primates

  • Chapter
  • First Online:
The Evolution of the Primate Hand

Abstract

The primate hand has long intrigued researchers of different disciplines. The extensive and elegant work of Napier included careful observations about the anatomy and function of the primate hand. While such observations and inferences substantially advanced our understanding of the primate hand, a more complete insight into the function of a complex organ such as the hand requires experimental investigation to illuminate patterns of joint movement, muscle activity, and loads. In the last decades, researchers have collected a wealth of information about hand morphology and function by setting up and conducting laboratory-based experiments. In this chapter, we give a comprehensive overview of the experimental work on the nonhuman primate hand that has been done since Napier’s publications in the 1950s. We discuss the different methods that are being used to study hand function: behavioral studies, kinematics, kinetics, dynamic palmar pressure, electromyography, medical imaging and computer modeling. Ultimately, studies focusing on hand form and function, especially those that include a diversity of extant species and integrate different types of data, will lead to a better understanding of the evolution of the human hand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldien Y, Welcome D, Rakheja S, Dong R, Boileau PE (2005) Contact pressure distribution at hand-handle interface: role of hand forces and handle size. Int J Ind Ergon 35:267–286

    Article  Google Scholar 

  • Banks JJ, Lavender SA, Buford JA, Sommerich CM (2007) Measuring pad-pad pinch strength in a non-human primate: Macaca fascicularis. J Electromyogr Kinesiol 17:725–730

    Article  PubMed  Google Scholar 

  • Bishop K (2007) Aerodynamic force generation, performance and control of body orientation during gliding in sugar gliders. J Exp Biol 210:2593–2606

    Article  PubMed  Google Scholar 

  • Buchholz B, Armstrong TJ (1992) A kinematic model of the human hand to evaluate its prehensile capabilities. J Biomech 25:149–162

    Article  CAS  PubMed  Google Scholar 

  • Burgar C, Valero-Cuevas FJ, Hentz VR (1997) Fine-wire electromyographic recording during force generation: application to index finger kinesiologic studies. Am J Phys Med Rehabil 76:494–501

    Article  CAS  PubMed  Google Scholar 

  • Bury SD, Plautz EJ, Liu W, Quaney BM, Luchies CW, Maletsky RA, Nudo RJ (2009) A novel device to measure power grip forces in squirrel monkeys. J Neurosci Methods 179:264–270

    Article  PubMed  PubMed Central  Google Scholar 

  • Carelsen B, Bakker NH, Strackee SD, Boon SN, Maas M, Sabczynski J, Grimbergen CA, Streekstra GJ (2005) 4D rotational x-ray imaging of wrist joint dynamic motion. Med Phys 32:2771–2776

    Article  PubMed  Google Scholar 

  • Carelsen B, Jonges R, Strackee SD, Maas M, van Kemenade P, Grimbergen CA, van Herk M, Streekstra GJ (2009) Detection of in vivo dynamic 3-D motion patterns in the wrist joint. IEEE Trans Biomed Eng 56:1236–1244

    Article  PubMed  Google Scholar 

  • Castiello U, Bennet K, Paulignan Y (1992) Does the type of prehension influence the kinematics of reaching? Behav Brain Res 50:7–15

    Article  CAS  PubMed  Google Scholar 

  • Chan SS, Moran DW (2006) Computational model of a primate arm: from hand position to joint angles, joint torques and muscle forces. J Neural Eng 3:327–337

    Article  PubMed  Google Scholar 

  • Chang Y, Bertram JEA, Lee DV (2000) External forces and torques generated by the brachiating white-handed gibbon (Hylobates lar). Am J Phys Anthropol 216:201–216

    Article  Google Scholar 

  • Channon AJ, Crompton RH, Günther MM, D’Août K, Vereecke EE (2010) The biomechanics of leaping in gibbons. Am J Phys Anthropol 143:403–416

    Article  CAS  PubMed  Google Scholar 

  • Channon AJ, Usherwood JR, Crompton RH, Günther MM, Vereecke EE (2012) The extraordinary athletic performance of leaping gibbons. Biol Lett 8:46–49

    Article  PubMed  Google Scholar 

  • Choppin S, Lane B, Wheat J (2014) The accuracy of the Microsoft Kinect in joint angle measurement. Sport Technol 7:98–105

    Article  Google Scholar 

  • Christel MI (1993) Grasping techniques and hand preferences in Hominoidea. In: Preuschoft H, Chivers DJ (eds) Hands of primates. Springer Verlag, Vienna, pp 91–108

    Chapter  Google Scholar 

  • Christel MI, Billard A (2002) Comparison between macaques’ and humans’ kinematics of prehension: the role of morphological differences and control mechanisms. Behav Brain Res 131:169–184

    Article  PubMed  Google Scholar 

  • Christel MI, Fragaszy D (2000) Manual function in Cebus apella: digital mobility, preshaping, and endurance in repetitive grasping. Int J Primatol 21:697–719

    Article  Google Scholar 

  • Christel MI, Kitzel S, Niemitz C (1998) How precisely do bonobos (Pan paniscus) grasp small objects? Int J Primatol 19:165–194

    Article  Google Scholar 

  • Corneil BD, Goonetilleke SC, Peel TR, Green KA, Welch ID (2012) Ultrasound-guided insertion of intramuscular electrodes into suboccipital muscles in the non-human primate. J Electromyogr Kinesiol 22:553–559

    Article  PubMed  Google Scholar 

  • Costello MB, Fragaszy DM (1988) Prehension in Cebus and Saimiri: I. Grip type and hand preference. Am J Primatol 15:235–245

    Article  Google Scholar 

  • Courtine G, Roy RR, Hodgson J, Mckay H, Zhong H, Yang H, Tuszynski MH, Edgerton VR, Raven J (2005) Kinematic and EMG determinants in quadrupedal locomotion of a non-human primate (Rhesus). J Neurophysiol 93:3127–3145

    Article  PubMed  Google Scholar 

  • Crisco JJ, Mcgovern RD, Wolfe SW (1999) Noninvasive technique for measuring in vivo three-dimensional carpal bone kinematics. J Orthop Res 17:96–100

    Article  CAS  PubMed  Google Scholar 

  • Daver G, Berillon G, Grimaud-Hervé D (2012) Carpal kinematics in quadrupedal monkeys: towards a better understanding of wrist morphology and function. J Anat 220:42–56

    Article  PubMed  Google Scholar 

  • de Monsabert BG, Vigouroux L, Bendahan D, Berton E (2014) Quantification of finger joint loadings using musculoskeletal modelling clarifies mechanical risk factors of hand osteoarthritis. Med Eng Phys 36(2):177–184

    Article  Google Scholar 

  • Elftman H (1934) A cinematic study of the distribution of pressure in the human foot. Anat Rec 59:481–491

    Article  Google Scholar 

  • Elftman H, Manter J (1934) The axis of the human foot. Science 80:484

    Article  CAS  PubMed  Google Scholar 

  • Elftman H, Manter J (1935) Chimpanzee and human feet in bipedal walking. Am J Phys Anthropol 20:69–79

    Article  Google Scholar 

  • Foumani M, Strackee SD, Jonges R, Blankevoort L, Zwinderman AH, Carelsen B, Streekstra GJ (2009) In-vivo three-dimensional carpal bone kinematics during flexion-extension and radio-ulnar deviation of the wrist: dynamic motion versus step-wise static wrist positions. J Biomech 42:2664–2671

    Article  CAS  PubMed  Google Scholar 

  • Gustus A, Stillfried G, Visser J, Jörntell H, van der Smagt P (2012) Human hand modelling: kinematics, dynamics, applications. Biol Cybern 106:741–755

    Article  PubMed  Google Scholar 

  • Hamrick MW, Churchill SE, Schmitt D, Hylander WL (1998) EMG of the human flexor pollicis longus muscle: implications for the evolution of hominid tool use. J Hum Evol 34:123–136

    Article  CAS  PubMed  Google Scholar 

  • Hall C (1997) External pressure at the hand during object handling and work with tools. Int J Ind Ergon 20:191–206

    Article  Google Scholar 

  • Hedrick TL (2008) Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspir Biomim 3:034001

    Article  PubMed  Google Scholar 

  • Hennig EM, Nicol K (1978) Registration methods for time-dependent pressure distribution measurements with mats working as capacitors. In: Asmussen E, Joergensen K (eds) Biomechanics VI-A. University Park Press, Baltimore, pp 361–367

    Google Scholar 

  • Higurashi Y, Hirasaki E, Kumakura H (2010) Palmar and plantar pressure while walking on a horizontal ladder and single pole in Macaca fuscata. Int J Primatol 31:181–190

    Article  Google Scholar 

  • Inouye S (1994) Ontogeny of knuckle-walking hand postures in African apes. J Hum Evol 26:459–485

    Article  Google Scholar 

  • Jenkins FA Jr (1981) Wrist rotation in primates: a critical adaptation for brachiators. Symp Zool Soc Lond 48:429–451

    Google Scholar 

  • Jenkins FA Jr, Fleagle JG (1975) Knuckle-walking and the functional anatomy of the wrists in living apes. In: Tuttle RH (ed) Primate functional morphology and evolution. Mouton, The Hague, pp 213–231

    Google Scholar 

  • Jenkins FA Jr, Dombrowski PJ, Gordon EP (1978) Analysis of the shoulder in brachiating spider monkeys. Am J Phys Anthropol 48:65–76

    Article  PubMed  Google Scholar 

  • Johnston JA, Bobich LR, Santello M (2010) Coordination of intrinsic and extrinsic hand muscle activity as a function of wrist joint angle during two-digit grasping. Neurosci Lett 474:104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jolly CJ (1970) The seed-eaters: a new model of hominid differentiation based on a baboon analogy. Man 5:5–26

    Article  Google Scholar 

  • Jouffroy FK, Medina MF (2002) Radio-ulnar deviation of the primate carpus: an X-ray study. Z Morphol Anthropol 83:275–289

    PubMed  Google Scholar 

  • Jude J (1993) Manipulative behavior of hamadryas baboons. Senior thesis, Arizona State University, Tempe, AZ, USA

    Google Scholar 

  • Jungers WL, Stern JT Jr (1981) Preliminary electromyographical analysis of brachiation in gibbon and spider monkey. Int J Primatol 2:19–33

    Article  Google Scholar 

  • Kaufman KR, An K-N, Litchy WJ, Cooney WP, Chao EY (1999) In-vivo function of the thumb muscles. Clin Biomech 14:141–150

    Article  CAS  Google Scholar 

  • Kerkhof F, Brugman E, D’Agostino P, Stockmans F, Jonkers I, Vereecke EE (2013) Determining carpal and metacarpal bone kinematics using dynamic CT: opportunities and challenges. Congress of the International Society of Biomechanics, Natal, Brazil, 4–9 August 2013 (abstract)

    Google Scholar 

  • Kimura T, Okada M, Ishida H (1979) Kinesiological characteristics of primate walking: its significance in human walking. In: Morbeck ME, Preuschoft H, Gomberg N (eds) Environment, behavior and morphology: dynamic interactions in primates. Gustav Fischer, New York, pp 297–311

    Google Scholar 

  • Kivell TL, Schmitt D, Wunderlich RE (2010) Hand and foot pressures in the aye-aye (Daubentonia madagascariensis) reveal novel biomechanical trade-offs required for walking on gracile digits. J Exp Biol 213:1549–1557

    Article  PubMed  Google Scholar 

  • Klein Breteler MD, Simura KJ, Flanders M (2007) Timing of muscle activation in a hand movement sequence. Cereb Cortex 17:803–815

    Article  PubMed  Google Scholar 

  • Lammers AR (2007) Locomotor kinetics on sloped arboreal and terrestrial substrates in a small quadrupedal mammal. Zoology 110:93–103

    Article  PubMed  Google Scholar 

  • Lammers AR, Gauntner T (2008) Mechanics of torque generation during quadrupedal arboreal locomotion. J Biomech 41:2388–2395

    Article  PubMed  Google Scholar 

  • Lemon RN (1999) Neural control of dexterity: what has been achieved? Exp Brain Res 128:6–12

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane NBW, Graziano MS (2009) Diversity of grip in Macaca mulatta. Exp Brain Res 197:255–268

    Article  PubMed  Google Scholar 

  • Marzke MW (1997) Precision grips, hand morphology, and tools. Am J Phys Anthropol 102:91–110

    Article  CAS  PubMed  Google Scholar 

  • Marzke MW, Marzke RF (1987) The third metacarpal styloid process in humans: origin and functions. Am J Phys Anthropol 73:415–431

    Article  CAS  PubMed  Google Scholar 

  • Marzke MW, Marzke RF (2000) Evolution of the human hand: approaches to acquiring, analysing and interpreting the anatomical evidence. J Anat 197:121–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Marzke MW, Shackley MS (1986) Hominid hand use in the Pliocene and Pleistocene: evidence from experimental archeology and comparative morphology. J Hum Evol 15:439–460

    Article  Google Scholar 

  • Marzke MW, Wullstein K (1996) Chimpanzee and human grips: a new classification with a focus on evolutionary morphology. Int J Primatol 17:117–139

    Article  Google Scholar 

  • Marzke MW, Wullstein K, Viegas S (1992) Evolution of the power (squeeze) grip and its morphological correlates in hominids. Am J Phys Anthropol 89:283–298

    Article  CAS  PubMed  Google Scholar 

  • Marzke MW, Toth N, Schick K, Reece S, Steinberg B, Hunt K, Linscheid R, An K-N (1998) EMG study of hand muscle recruitment during hard hammer percussion manufacture of Oldowan tools. Am J Phys Anthropol 105:315–332

    Article  CAS  PubMed  Google Scholar 

  • Matarazzo S (2013) Manual pressure distribution patterns of knuckle-walking apes. Am J Phys Anthropol 152:44–50

    Article  PubMed  Google Scholar 

  • Metcalf CD, Robinson R, Malpass A, Bogle T, Dell T, Harris C, Demain S (2013) Markerless motion capture and measurement of hand kinematics: validation and application to home-based upper limb rehabilitation. IEEE Trans Biomed Eng 60:2184–2192

    Article  PubMed  Google Scholar 

  • Michilsens F, D’Août K, Vereecke EE, Aerts P (2012) One step beyond: different step-to-step transitions exist during continuous contact brachiation in siamangs. Biol Open 1:411–421

    Article  PubMed  PubMed Central  Google Scholar 

  • Moojen T, Snel J, Ritt MJP, Kauer JM, Venema H, Bos K (2002) Three-dimensional carpal kinematics in vivo. Clin Biomech 17:506–514

    Article  CAS  Google Scholar 

  • Moore DC, Crisco JJ, Trafton TG, Leventhal EL (2007) A digital database of wrist bone anatomy and carpal kinematics. J Biomech 40:2537–2542

    Article  PubMed  Google Scholar 

  • Napier JR (1955) Form and function of the carpometacarpal joint of the thumb. J Anat 89:362–369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Napier JR (1956) The prehensile movements of the human hand. J Bone Joint Surg [Br] 38B:902–913

    Google Scholar 

  • Napier JR (1960) Studies of the hand of living primates. Proc Zool Soc Lond 134:647–657

    Article  Google Scholar 

  • Napier JR (1961) Prehensility and opposability in the hands of primates. Symp Zool Soc Lond 5:115–132

    Google Scholar 

  • Napier J (1980) Hands. Panthenon Books, New York

    Google Scholar 

  • Nicol K, Hennig EM (1976) Time dependent method for measuring force distribution using a flexible mat as a capacitor. In: Komi P (ed) Biomechanics V-B. University Park Press, Baltimore, pp 433–440

    Google Scholar 

  • O’Connor BL, Rarey KE (1979) Normal amplitudes of radioulnar pronation and supination in several genera of anthropoid primates. Am J Phys Anthropol 51:39–43

    Article  Google Scholar 

  • Orr CM, Leventhal EL, Chivers SF, Marzke MW, Wolfe SW, Crisco JJ (2010) Studying primate carpal kinematics in three dimensions using a computed-tomography-based markerless registration method. Anat Rec 293:692–709

    Article  Google Scholar 

  • Patel BA (2009) Not so fast: speed effects on forelimb kinematics in cercopithecine monkeys and implications for digitigrade postures in primates. Am J Phys Anthropol 140:92–112

    Article  PubMed  Google Scholar 

  • Patel BA (2010) The interplay between speed, kinetics, and hand postures during primate terrestrial locomotion. Am J Phys Anthropol 141:222–234

    PubMed  Google Scholar 

  • Patel BA, Polk J (2010) Distal forelimb kinematics in Erythrocebus patas and Papio anubis during walking and galloping. Int J Primatol 31:191–207

    Article  Google Scholar 

  • Patel BA, Wunderlich RE (2010) Dynamic pressure patterns in the hands of olive baboons (Papio anubis) during terrestrial locomotion: implications for cercopithecoid primate hand morphology. Anat Rec 293:710–718

    Article  Google Scholar 

  • Patel BA, Larson SG, Stern JT Jr (2012) Electromyography of wrist and finger flexor muscles in olive baboons (Papio anubis). J Exp Biol 215:115–123

    Article  PubMed  Google Scholar 

  • Pizzimenti MA, Darling WG, Rotella DL, McNeal DW, Herrick JL, Ge J, Stilwell-Morecraft KS, Morecraft RJ (2007) Measurement of reaching kinematics and prehensile dexterity in nonhuman primates. J Neurophys 98:1015–1029

    Article  Google Scholar 

  • Pontzer H, Raichlen DA, Rodman PS (2014) Bipedal and quadrupedal locomotion in chimpanzees. J Hum Evol 66:64–82

    Article  PubMed  Google Scholar 

  • Pouydebat E, Coppens Y, Gorce P (2006a) Évolution de la préhension chez les primates humains et non humains: la précision et l’utilisation d’outils revisitées. Anthropologie 110:687–697

    Article  Google Scholar 

  • Pouydebat E, Berge C, Gorce P, Coppens Y (2006b) La préhension chez les Primates : précision, outils et perspectives évolutives. C R Palevol 5:597–602

    Article  Google Scholar 

  • Pouydebat E, Gorce P, Coppens Y, Bels V (2009) Biomechanical study of grasping according to the volume of the object: human versus non-human primates. J Biomech 42:266–272

    Article  PubMed  Google Scholar 

  • Rainbow MJ, Crisco JJ, Moore DC, Wolfe SW (2008) Gender differences in capitate kinematics are eliminated after accounting for variation in carpal size. J Biomech Eng 130:041003

    Article  PubMed  PubMed Central  Google Scholar 

  • Rainbow MJ, Kamal RN, Leventhal E, Akelman E, Moore DC, Wolfe SW, Crisco JJ (2013) In vivo kinematics of the scaphoid, lunate, capitate, and third metacarpal in extreme wrist flexion and extension. J Hand Surg [Am] 38:278–288

    Article  Google Scholar 

  • Reghem E, Chèze L, Coppens Y, Pouydebat E (2013) Unconstrained 3D-kinematics of prehension in five primates: lemur, capuchin, gorilla, chimpanzee, human. J Hum Evol 65:303–312

    Article  PubMed  Google Scholar 

  • Reynolds TR (1985) Stresses on the limbs of quadrupedal primates. Am J Phys Anthropol 67:351–362

    Article  CAS  PubMed  Google Scholar 

  • Rolian C, Lieberman DE, Zermeno JP (2011) Hand biomechanics during simulated stone tool use. J Hum Evol 61:26–41

    Article  PubMed  Google Scholar 

  • Rose MD (1977) Positional behavior of olive baboons (Papio anubis) and its relationship to maintenance and social activities. Primates 18:59–116

    Article  Google Scholar 

  • Rudroff T (2008) Kinesiological fine wire EMG. A practical introduction to fine wire EMG applications. Version 1.0

    Google Scholar 

  • Schick KD, Toth N, Garufi G, Savage-Rumbaugh ES, Rumbaugh D, Sevcik R (1999) Continuing investigations into the stone tool-making and tool-using capabilities of a bonobo (Pan paniscus). J Archaeol Sci 26:821–832

    Article  Google Scholar 

  • Schilling A-M, Tofanelli S, Hublin J-J, Kivell TL (2014) Trabecular bone structure in the primate wrist. J Morphol 275:572–585

    PubMed  Google Scholar 

  • Schmidt M, Fischer MS (2000) Cineradiographic study of forelimb movements during quadrupedal walking in the brown lemur (Eulemur fulvus, Primates: Lemuridae). Am J Phys Anthropol 262:245–262

    Article  Google Scholar 

  • Schmitt D (1994) Forelimb mechanics as a function of substrate type during quadrupedalism in two anthropoid primates. J Hum Evol 26:441–457

    Article  Google Scholar 

  • Schmitt D (1998) Forelimb mechanics during arboreal and terrestrial quadrupedalism in Old World monkeys. In: Strasser E, Fleagle J, Rosenberger AL, McHenry H (eds) Primate locomotion: recent advances. Springer, New York, pp 175–200

    Chapter  Google Scholar 

  • Schmitt D (1999) Compliant walking in primates. J Zool 248:149–160

    Article  Google Scholar 

  • Schmitt D (2003a) Substrate size and primate forelimb mechanics: implications for understanding the evolution of primate locomotion. Int J Primatol 24:1023–1036

    Article  Google Scholar 

  • Schmitt D (2003b) Mediolateral reaction forces and forelimb anatomy in quadrupedal primates: implications for interpreting locomotor behavior in fossil primates. J Hum Evol 44:47–58

    Article  PubMed  Google Scholar 

  • Schmitt D, Lemelin P (2002) Origins of primate locomotion: gait mechanics of the woolly opossum. Am J Phys Anthropol 118:231–238

    Article  PubMed  Google Scholar 

  • Schmitt D, Hanna JB (2004) Substrate alters forelimb to hindlimb peak force ratios in primates. J Hum Evol 46:237–252

    Article  Google Scholar 

  • Schwartz P, Heath A (1937) Some factors which influence the balance of the foot in walking. J Bone Joint Surg [Am] 19:431–442

    Google Scholar 

  • Schwartz C, Lempereur M, Burdin V, Jacq J-J, Remy-Neris O (2007) Shoulder motion analysis using simultaneous skin shape registration. Conf Proc IEEE Eng Med Biol Soc. pp 533–536

    Google Scholar 

  • Sellers WI, Hirasaki E (2014) Markerless 3D motion capture for animal locomotion studies. Biol Open 3:656–668

    Article  PubMed  PubMed Central  Google Scholar 

  • Solomonow M, Baratta R, Bernardi M, Zhou B, Lu Y, Zhu M, Acierno S (1994) Surface and wire EMG crosstalk in neighbouring muscles. J Electromyogr Kinesiol 4:131–142

    Article  CAS  PubMed  Google Scholar 

  • Spinozzi G, Truppa V, Laganà T (2004) Grasping behavior in tufted capuchin monkeys (Cebus apella): grip types and manual laterality for picking up a small food item. Am J Phys Anthropol 125:30–41

    Article  PubMed  Google Scholar 

  • Spinozzi G, Lagana T, Truppa V (2007) Hand use by tufted capuchins (Cebus apella) to extract a small food items from a tube: digit movements, hand preference, and performance. Am J Primatol 69:336–352

    Article  CAS  PubMed  Google Scholar 

  • Stern JT Jr, Wells JP, Jungers WL, Vangor AK, Fleagle JG (1980) An electromyographic study of the pectoralis major in atelines and Hylobates, with special reference to the evolution of a pars clavicularis. Am J Phys Anthropol 52:13–25

    Article  PubMed  Google Scholar 

  • Stevens NJ, Schmitt D, Cole TM, Chan L (2006) Technical note: out-of-plane angular correction based on a trigonometric function for use in two-dimensional kinematic studies. Am J Phys Anthropol 402:399–402

    Article  Google Scholar 

  • Susman RL (1988) Hand of Paranthropus robustus from Member 1, Swartkrans: fossil evidence for tool behavior. Science 240:781–784

    Article  CAS  PubMed  Google Scholar 

  • Susman RL (1989) New hominid fossils from the Swartkrans formation (1979–1986 excavations): postcranial specimens. Am J Phys Anthropol 79:451–474

    Article  CAS  PubMed  Google Scholar 

  • Susman RL (1998) Hand function and tool behavior in early hominids. J Hum Evol 35:23–46

    Article  CAS  PubMed  Google Scholar 

  • Susman RL, Stern JT Jr (1979) Telemetered electromyography of flexor digitorum profundus and flexor digitorum superficialis in Pan troglodytes and implications for interpretation of the O.H. 7 hand. Am J Phys Anthropol 50:565–574

    Article  CAS  PubMed  Google Scholar 

  • Susman RL, Stern JT Jr (1980) EMG of the interosseus and limbrical muscles in the chimpanzee (Pan troglodytes) hand during locomotion. Am J Anat 157:389–397

    Article  CAS  PubMed  Google Scholar 

  • Susman RL, Tuttle RH (1976) Knuckling behavior in captive orangutans and a wounded baboon. Am J Phys Anthropol 45:123–124

    Article  Google Scholar 

  • Susman RL, Jungers WL, Stern JT Jr (1982) The functional morphology of the accessory interosseous muscle in the gibbon hand: determination of locomotor and manipulatory compromises. J Anat 134:111–120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tocheri MW, Marzke MW, Liu D, Bae M, Jones GP, Williams RC, Razdan A (2003) Functional capabilities of modern and fossil hominid hands: three-dimensional analysis of trapezia. Am J Phys Anthropol 122:101–112

    Article  CAS  PubMed  Google Scholar 

  • Toth N, Schick K (1993) Early stone industries and inferences regarding language and cognition. In: Gibson K, Ingold T (eds) Tools, language and cognition in human evolution. Cambridge University Press, Cambridge, pp 346–362

    Google Scholar 

  • Toth N, Schick KD, Savage-Rumbaugh ES, Sevcik RA, Rumbaugh DM (1993) Pan the tool-maker: investigations into the stone tool-making and tool-using capabilities of a bonobo (Pan paniscus). J Archaeol Sci 20:81–91

    Article  Google Scholar 

  • Tuttle RH (1969) Knuckle-walking and problem of human origins. Science 166:953–961

    Article  CAS  PubMed  Google Scholar 

  • Tuttle RH, Basmajian JV (1974a) Electromyography of brachial muscles in Pan gorilla and hominoid evolution. Am J Phys Anthropol 41:71–90

    Article  Google Scholar 

  • Tuttle RH, Basmajian JV (1974b) Electromyography of forearm musculature in Gorilla and problems related to knuckle-walking. In: Jenkins FA Jr (ed) Primate Locomotion. Academic Press, New York, pp 293–348

    Chapter  Google Scholar 

  • Tuttle RH, Basmajian JV (1978a) Electromyography of pongid shoulder muscles. II. Deltoid, rhomboid and “rotator cuff.”. Am J Phys Anthropol 49:47–56

    Article  CAS  PubMed  Google Scholar 

  • Tuttle RH, Basmajian JV (1978b) Electromyography of pongid shoulder muscles. III. Quadrupedal positional behavior. Am J Phys Anthropol 49:57–69

    Article  CAS  PubMed  Google Scholar 

  • Tuttle RH, Basmajian JV, Regenos E, Shine G (1972) Electromyography of knuckle-walking: results of four experiments on the forearm of Pan gorilla. Am J Phys Anthropol 37:255–265

    Article  CAS  PubMed  Google Scholar 

  • Tuttle RH, Velte MJ, Basmajian JV (1983) Electromyography of brachial muscles in Pan troglodytes and Pongo pygmaeus. Am J Phys Anthropol 61:75–83

    Article  CAS  PubMed  Google Scholar 

  • Tuttle RH, Hollowed JR, Basmajian JV (1992) Electromyography of pronators and supinators in great apes. Am J Phys Anthropol 87:215–226

    Article  CAS  PubMed  Google Scholar 

  • van der Smagt P, Stillfried G (2008) Using MRI data to compute a hand kinematic model. 9th Conf. Motion Vib. pp 1–10

    Google Scholar 

  • Vereecke EE, D’Août K, De Clercq D, Van Elsacker L, Aerts P (2003) Dynamic plantar pressure distribution during terrestrial locomotion of bonobos (Pan paniscus). Am J Phys Anthropol 120:373–383

    Article  PubMed  Google Scholar 

  • Vereecke EE, D’Août K, Van Elsacker L, De Clercq D, Aerts P (2005) Functional analysis of the gibbon foot during terrestrial bipedal walking: plantar pressure distributions and three-dimensional ground reaction forces. Am J Phys Anthropol 128:659–669

    Article  PubMed  Google Scholar 

  • Vigouroux L, Quaine F, Labarre-Vila A, Amarantini D, Moutet F (2007) Using EMG data to constrain optimization procedure improves finger tendon tension estimations during static fingertip force production. J Biomech 40:2846–2856

    Article  PubMed  Google Scholar 

  • Williams EM, Richmond BG (2012) Manual pressure distribution during stone tool use. Am J Phys Anthropol 147(Suppl 54):303 (abstract)

    Google Scholar 

  • Williams EM, Gordon AD, Richmond BG (2010) Upper limb kinematics and the role of the wrist during stone tool production. Am J Phys Anthropol 143:134–145

    Article  CAS  PubMed  Google Scholar 

  • Williams EM, Gordon AD, Richmond BG (2012) Hand pressure distribution during Oldowan stone tool production. J Hum Evol 62:520–532

    Article  PubMed  Google Scholar 

  • Wolfe SW, Neu C, Crisco JJ (2000) In vivo scaphoid, lunate, and capitate kinematics in flexion and in extension. J Hand Surg [Am] 25:860–869

    Article  CAS  Google Scholar 

  • Wunderlich RE (1999) Pedal form and plantar pressure distribution in anthropoid primates. Ph.D. dissertation, State University of New York at Stony Brook

    Google Scholar 

  • Wunderlich RE, Patel B (2008) Peak pressures and cheiridial postures in baboons (Papio anubis). Society of Integrative and Comparative Biology, e245 (abstract)

    Google Scholar 

  • Wunderlich RE, Jungers WL (2009) Manual digital pressures during knuckle-walking in chimpanzees (Pan troglodytes). Am J Phys Anthropol 139:394–403

    Article  CAS  PubMed  Google Scholar 

  • Yousef H, Boukallel M, Althoefer K (2011) Tactile sensing for dexterous in-hand manipulation in robotics: a review. Sensors Actuat A Phys 167:171–187

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evie E. Vereecke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vereecke, E.E., Wunderlich, R.E. (2016). Experimental Research on Hand Use and Function in Primates. In: Kivell, T., Lemelin, P., Richmond, B., Schmitt, D. (eds) The Evolution of the Primate Hand. Developments in Primatology: Progress and Prospects. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3646-5_10

Download citation

Publish with us

Policies and ethics