Skip to main content

Intronless β-Globin Reporter: A Tool for Studying Nuclear RNA Stability Elements

  • Protocol
  • First Online:
Synthetic mRNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1428))

Abstract

The intronless β-globin reporter, whose mRNA is intrinsically unstable due to the lack of introns, is a useful tool to study RNA stability elements in a heterologous transcript. Insertion of a stability element leads to the accumulation of intronless β-globin mRNA that can be visualized by conventional Northern blot analyses. In this chapter, we explain how to perform the β-globin reporter assay using the ENE (expression and nuclear retention element), a triple-helix-forming RNA stability element that protects reporter mRNA from 3′– 5′ decay. A list of considerations is included for the use of ENEs as a tool to stabilize other RNAs. In this chapter, we provide a brief description of how to insert an ENE sequence into the 3′-untranslated region of an intronless β-globin reporter plasmid using basic cloning technology. Then, we provide a detailed protocol for quantitative measurements of steady-state levels of β-globin mRNA. This entails the transient transfection of mammalian cells with β-globin reporter plasmids, isolation of total cellular RNA, and detection of reporter mRNA via Northern blot. This methodology can be applied for the study of any nuclear RNA stability element using the intronless β-globin reporter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baserga SJ, Benz EJ Jr (1988) Nonsense mutations in the human beta-globin gene affect mRNA metabolism. Proc Natl Acad Sci U S A 85:2056–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lykke-Andersen J, Shu MD, Steitz JA (2000) Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 103:1121–1131

    Article  CAS  PubMed  Google Scholar 

  3. Newman TC, Ohme-Takagi M, Taylor CB, Green PJ (1993) DST sequences, highly conserved among plant SAUR genes, target reporter transcripts for rapid decay in tobacco. Plant Cell 5:701–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Conrad NK, Steitz JA (2005) A Kaposi’s sarcoma virus RNA element that increases the nuclear abundance of intronless transcripts. EMBO J 24:1831–1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Akef A, Lee ES, Palazzo AF (2015) Splicing promotes the nuclear export of beta-globin mRNA by overcoming nuclear retention elements. RNA 21:1–13

    Article  Google Scholar 

  6. Tycowski KT, Shu MD, Borah S, Shi M, Steitz JA (2012) Conservation of a triple-helix-forming RNA stability element in noncoding and genomic RNAs of diverse viruses. Cell Rep 2:26–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brown JA, Valenstein ML, Yario TA, Tycowski KT, Steitz JA (2012) Formation of triple-helical structures by the 3′-end sequences of MALAT1 and MENbeta noncoding RNAs. Proc Natl Acad Sci U S A 109:19202–19207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mitton-Fry RM, DeGregorio SJ, Wang J, Steitz TA, Steitz JA (2010) Poly(A) tail recognition by a viral RNA element through assembly of a triple helix. Science 330:1244–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brown JA, Bulkley D, Wang J, Valenstein ML, Yario TA, Steitz TA, Steitz JA (2014) Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat Struct Mol Biol 21:633–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Conrad NK, Mili S, Marshall EL, Shu MD, Steitz JA (2006) Identification of a rapid mammalian deadenylation-dependent decay pathway and its inhibition by a viral RNA element. Mol Cell 24:943–953

    Article  CAS  PubMed  Google Scholar 

  11. Wilusz JE, JnBaptiste CK, Lu LY, Kuhn CD, Joshua-Tor L, Sharp PA (2012) A triple helix stabilizes the 3′ ends of long noncoding RNAs that lack poly(A) tails. Genes Dev 26:2392–2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Conrad NK, Shu MD, Uyhazi KE, Steitz JA (2007) Mutational analysis of a viral RNA element that counteracts rapid RNA decay by interaction with the polyadenylate tail. Proc Natl Acad Sci U S A 104:10412–10417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wilusz JE, Freier SM, Spector DL (2008) 3′ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135:919–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sunwoo H, Dinger ME, Wilusz JE, Amaral PP, Mattick JS, Spector DL (2009) MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res 19:347–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pawlicki JM, Steitz JA (2008) Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production. J Cell Biol 182:61–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Muniz L, Davidson L, West S (2015) Poly(A) polymerase and the nuclear poly(A) binding protein, PABPN1, coordinate the splicing and degradation of a subset of human pre-mRNAs. Mol Cell Biol 35:2218–2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bhandari D, Raisch T, Weichenrieder O, Jonas S, Izaurralde E (2014) Structural basis for the nanos-mediated recruitment of the CCR4-NOT complex and translational repression. Genes Dev 28:888–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chapman EG, Moon SL, Wilusz J, Kieft JS (2014) RNA structures that resist degradation by Xrn1 produce a pathogenic Dengue virus RNA. Elife 3:e01892

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chapman EG, Costantino DA, Rabe JL, Moon SL, Wilusz J, Nix JC, Kieft JS (2014) The structural basis of pathogenic subgenomic flavivirus RNA (sfRNA) production. Science 344:307–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Green MR, Sambrook J, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

Download references

Acknowledgments

We thank Mei-Di Shu and Kazimierz Tycowski for critical review of the manuscript, Angela Miccinello for editorial work, and all Steitz lab members for thoughtful discussions. This work was supported by NIH grants GM111430 (J.A.B.) and GM026154 (J.A.S.). J.A.S. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica A. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Brown, J.A., Steitz, J.A. (2016). Intronless β-Globin Reporter: A Tool for Studying Nuclear RNA Stability Elements. In: Rhoads, R. (eds) Synthetic mRNA. Methods in Molecular Biology, vol 1428. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3625-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3625-0_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3623-6

  • Online ISBN: 978-1-4939-3625-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics