Skip to main content

Inscribing Optical Excitability to Non-Excitable Cardiac Cells: Viral Delivery of Optogenetic Tools in Primary Cardiac Fibroblasts

  • Protocol
  • First Online:
Optogenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1408))

Abstract

We describe in detail a method to introduce optogenetic actuation tools, a mutant version of channelrhodopsin-2, ChR2(H134R), and archaerhodopsin (ArchT), into primary cardiac fibroblasts (cFB) in vitro by adenoviral infection to yield quick, robust, and consistent expression. Instructions on adjusting infection parameters such as the multiplicity of infection and virus incubation duration are provided to generalize the method for different lab settings or cell types. Specific conditions are discussed to create hybrid co-cultures of the optogenetically modified cFB and non-transformed cardiomyocytes to obtain light-sensitive excitable cardiac syncytium, including stencil-patterned cell growth. We also describe an all-optical framework for the functional testing of responsiveness of these opsins in cFB. The presented methodology provides cell-specific tools for the mechanistic investigation of the functional bioelectric contribution of different non-excitable cells in the heart and their electrical coupling to cardiomyocytes under different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lajiness JD, Conway SJ (2013) Origin, development, and differentiation of cardiac fibroblasts. J Mol Cell Cardiol. doi:10.1016/j.yjmcc.2013.11.003

    PubMed  PubMed Central  Google Scholar 

  2. Vasquez C, Benamer N, Morley GE (2011) The cardiac fibroblast: functional and electrophysiological considerations in healthy and diseased hearts. J Cardiovasc Pharmacol 57(4):380–388. doi:10.1097/FJC.0b013e31820cda19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bursac N (2014) Cardiac fibroblasts in pressure overload hypertrophy: the enemy within? J Clin Invest 124(7):2850–2853. doi:10.1172/JCI76628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Doetschman T, Azhar M (2012) Cardiac-specific inducible and conditional gene targeting in mice. Circ Res 110(11):1498–1512. doi:10.1161/CIRCRESAHA.112.265066

    Article  CAS  PubMed  Google Scholar 

  5. Zeisberg EM, Kalluri R (2010) Origins of cardiac fibroblasts. Circ Res 107(11):1304–1312. doi:10.1161/CIRCRESAHA.110.231910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Krenning G, Zeisberg EM, Kalluri R (2010) The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol 225(3):631–637. doi:10.1002/jcp.22322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baudino TA, Carver W, Giles W, Borg TK (2006) Cardiac fibroblasts: friend or foe? Am J Physiol 291(3):H1015–H1026. doi:10.1152/ajpheart.00023.2006

    CAS  Google Scholar 

  8. Nag AC (1980) Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution. Cytobios 28(109):41–61

    CAS  PubMed  Google Scholar 

  9. Camelliti P, Borg TK, Kohl P (2005) Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res 65(1):40–51. doi:10.1016/j.cardiores.2004.08.020

    Article  CAS  PubMed  Google Scholar 

  10. Kohl P, Gourdie RG (2014) Fibroblast-myocyte electrotonic coupling: does it occur in native cardiac tissue? J Mol Cell Cardiol. doi:10.1016/j.yjmcc.2013.12.024

    PubMed  PubMed Central  Google Scholar 

  11. Rohr S (2012) Arrhythmogenic implications of fibroblast-myocyte interactions. Circ Arrhythm Electrophysiol 5(2):442–452. doi:10.1161/circep.110.957647

    Article  PubMed  Google Scholar 

  12. Pedrotty DM, Klinger RY, Kirkton RD, Bursac N (2009) Cardiac fibroblast paracrine factors alter impulse conduction and ion channel expression of neonatal rat cardiomyocytes. Cardiovasc Res 83(4):688–697. doi:10.1093/cvr/cvp164, cvp164 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vasquez C, Mohandas P, Louie KL, Benamer N, Bapat AC, Morley GE (2010) Enhanced fibroblast-myocyte interactions in response to cardiac injury. Circ Res 107(8):1011–1020. doi:10.1161/CIRCRESAHA.110.227421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miragoli M, Salvarani N, Rohr S (2007) Myofibroblasts induce ectopic activity in cardiac tissue. Circ Res 101(8):755–758. doi:10.1161/CIRCRESAHA.107.160549

    CAS  PubMed  Google Scholar 

  15. Miragoli M, Gaudesius G, Rohr S (2006) Electrotonic modulation of cardiac impulse conduction by myofibroblasts. Circ Res 98(6):801–810. doi:10.1161/01.RES.0000214537.44195.a3

    Article  CAS  PubMed  Google Scholar 

  16. Vasquez C, Morley GE (2012) The origin and arrhythmogenic potential of fibroblasts in cardiac disease. J Cardiovasc Transl Res 5(6):760–767. doi:10.1007/s12265-012-9408-1

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chen W, Frangogiannis NG (2013) Fibroblasts in post-infarction inflammation and cardiac repair. Biochim Biophys Acta 1833(4):945–953. doi:10.1016/j.bbamcr.2012.08.023

    Article  CAS  PubMed  Google Scholar 

  18. Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15(24):2279–2284. doi:10.1016/j.cub.2005.11.032, S0960-9822(05)01407-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  19. Han X, Chow BY, Zhou H, Klapoetke NC, Chuong A, Rajimehr R, Yang A, Baratta MV, Winkle J, Desimone R, Boyden ES (2011) A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front Syst Neurosci 5:18. doi:10.3389/fnsys.2011.00018

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chow BY, Han X, Dobry AS, Qian X, Chuong AS, Li M, Henninger MA, Belfort GM, Lin Y, Monahan PE, Boyden ES (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463(7277):98–102. doi:10.1038/nature08652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dugue GP, Akemann W, Knopfel T (2012) A comprehensive concept of optogenetics. Prog Brain Res 196:1–28. doi:10.1016/B978-0-444-59426-6.00001-X

    Article  CAS  PubMed  Google Scholar 

  22. Entcheva E (2013) Cardiac optogenetics. Am J Physiol Heart Circ Physiol 304(9):H1179–H1191. doi:10.1152/ajpheart.00432.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ambrosi CM, Klimas A, Yu J, Entcheva E (2014) Cardiac applications of optogenetics. Prog Biophys Mol Biol 115(2-3):294–304. doi:10.1016/j.pbiomolbio.2014.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu JZ, Boyle PM, Ambrosi CM, Trayanova NA, Entcheva E (2013) High-throughput contactless optogenetic assay for cellular coupling: illustration by Chr2-light-sensitized cardiac fibroblasts and cardiomyocytes. Circulation 128(22)

    Google Scholar 

  25. Pedrotty DM, Klinger RY, Badie N, Hinds S, Kardashian A, Bursac N (2008) Structural coupling of cardiomyocytes and noncardiomyocytes: quantitative comparisons using a novel micropatterned cell pair assay. Am J Physiol Heart Circ Physiol 295(1):H390–H400. doi:10.1152/ajpheart.91531.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nguyen H, Badie N, McSpadden L, Pedrotty D, Bursac N (2014) Quantifying electrical interactions between cardiomyocytes and other cells in micropatterned cell pairs. Methods Mol Biol 1181:249–262. doi:10.1007/978-1-4939-1047-2_21

    Article  PubMed  PubMed Central  Google Scholar 

  27. Arrenberg AB, Stainier DY, Baier H, Huisken J (2010) Optogenetic control of cardiac function. Science 330(6006):971–974. doi:10.1126/science.1195929

    Article  CAS  PubMed  Google Scholar 

  28. Bruegmann T, Malan D, Hesse M, Beiert T, Fuegemann CJ, Fleischmann BK, Sasse P (2010) Optogenetic control of heart muscle in vitro and in vivo. Nat Methods 7(11):897–900. doi:10.1038/nmeth.1512

    Article  CAS  PubMed  Google Scholar 

  29. Abilez OJ, Wong J, Prakash R, Deisseroth K, Zarins CK, Kuhl E (2011) Multiscale computational models for optogenetic control of cardiac function. Biophys J 101(6):1326–1334. doi:10.1016/j.bpj.2011.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Williams JC, Xu J, Lu Z, Klimas A, Chen X, Ambrosi CM, Cohen IS, Entcheva E (2013) Computational optogenetics: empirically-derived voltage- and light-sensitive channelrhodopsin-2 model. PLoS Comput Biol 9(9):e1003220. doi:10.1371/journal.pcbi.1003220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vogt CC, Bruegmann T, Malan D, Ottersbach A, Roell W, Fleischmann BK, Sasse P (2015) Systemic gene transfer enables optogenetic pacing of mouse hearts. Cardiovasc Res. doi:10.1093/cvr/cvv004

    PubMed  Google Scholar 

  32. Ambrosi C, Entcheva E (2014) Optogenetic control of cardiomyocytes via viral delivery. In: Radisic M, Black Iii LD (eds) Cardiac tissue engineering, vol 1181, Methods in molecular biology. Springer, New York, pp 215–228. doi:10.1007/978-1-4939-1047-2_19

    Google Scholar 

  33. Nussinovitch U, Shinnawi R, Gepstein L (2014) Modulation of cardiac tissue electrophysiological properties with light-sensitive proteins. Cardiovasc Res 102(1):176–187. doi:10.1093/cvr/cvu037

    Article  CAS  PubMed  Google Scholar 

  34. Jia Z, Valiunas V, Lu Z, Bien H, Liu H, Wang HZ, Rosati B, Brink PR, Cohen IS, Entcheva E (2011) Stimulating cardiac muscle by light: cardiac optogenetics by cell delivery. Circ Arrhythm Electrophysiol 4(5):753–760. doi:10.1161/CIRCEP.111.964247

    Article  PubMed  PubMed Central  Google Scholar 

  35. Entcheva E, Bien H (2009) Mechanical and spatial determinants of cytoskeletal geodesic dome formation in cardiac fibroblasts. Integr Biol 1(2):212–219. doi:10.1039/B818874b

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH-NHLBI grant R01-HL-111649 and NSF-Biophotonics grant 1511353 (to E.E.), and partially by a NYSTEM grant C026716 to the Stony Brook Stem Cell Center. We thank Christina Ambrosi and Aleks Klimas for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Entcheva Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yu, J., Entcheva, E. (2016). Inscribing Optical Excitability to Non-Excitable Cardiac Cells: Viral Delivery of Optogenetic Tools in Primary Cardiac Fibroblasts. In: Kianianmomeni, A. (eds) Optogenetics. Methods in Molecular Biology, vol 1408. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3512-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3512-3_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3510-9

  • Online ISBN: 978-1-4939-3512-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics