Skip to main content

Impact of Intense Physical Activity on Puberty and Reproductive Potential of Young Athletes

  • Chapter
  • First Online:
Exercise and Human Reproduction

Abstract

Individuals are becoming increasingly involved in physical activities, ranging from regular mild exercise to highly competitive performance requiring intensive and strenuous training. However, as the duration, frequency, and intensity of exercise increases, great concern and major reactions arouse regarding the deleterious effects of intensive physical activity on somatic growth, pubertal development, and biological maturation.

Intensive physical training and negative energy balance alter the hypothalamic pituitary set point at puberty, prolong the prepubertal stage, and delay pubertal development and menarche in a variety of sports. On the other hand, exercise-related reproductive dysfunction appears to be multifactorial in origin, reflecting the energy drain and deterioration of energy balance rather than the impact of intense exercise per se and is associated with deleterious effects on bone health. Recent findings underscore the endocrine role of adipose tissue and gut-derived hormones in mediating the regulation of metabolism and reproduction, providing further data on our understanding of the connection between energy homeostasis and pubertal progression and reproductive dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buck Louis GM, Gray LE Jr, Marcus M, Ojeda SR, Pescovitz OH, Witchel SF, et al. Environmental factors and puberty timing: expert panel research needs. Pediatrics. 2008;121:S192–207.

    Article  PubMed  Google Scholar 

  2. Tanner JM, Whitehouse RH, Marsall WA, Carter BS. Prediction of adult height, bone age, and occurrence of menarche, at age 4 to 16 with allowance for midparental height. Arch Dis Child. 1975;50:14–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rogol AD, Clark PA, Roemmich JN. Growth and pubertal development in children and adolescents: effects of diet and physical activity. Ann J Clin Nutr. 2000;72:521–8.

    Google Scholar 

  4. Malina RM. Physical growth and biological maturation of young athletes. Exerc Sport Sci Rev. 1994;22:389–433.

    Article  CAS  PubMed  Google Scholar 

  5. Claessens A, Lefevre J, Beunen G, Malina RM. The contribution of anthropometric characteristics to performance scores in elite female gymnasts. J Sports Med Phys Fit. 1999;39:355–60.

    CAS  Google Scholar 

  6. Bonen A. Recreational exercise does not impair menstrual cycles: a prospective study. Int J Sports Med. 1992;13:110–20.

    Article  CAS  PubMed  Google Scholar 

  7. Georgopoulos NA, Markou KB, Theodoropoulou A, Benardot D, Leglise M, Vagenakis AG. Growth retardation in artistic compared to rhythmic elite female gymnasts. J Clin Endocrinol Metab. 2002;87(7):3169–73.

    Article  CAS  PubMed  Google Scholar 

  8. Georgopoulos NA, Theodoropoulou A, Leglise M, Vagenakis AG, Markou K. Growth and skeletal maturation in male and female artistic gymnasts. J Clin Endocrinol Metab. 2004;89:4377–82.

    Article  CAS  PubMed  Google Scholar 

  9. Georgopoulos N, Markou K, Theodoropoulou A, Paraskevopoulou P, Varaki L, Kazantzi Z, et al. Growth and pubertal development in elite female rhythmic gymnasts. J Clin Endocrinol Metab. 1999;84:4525–30.

    Article  CAS  PubMed  Google Scholar 

  10. Georgopoulos NA, Markou K, Theodoropoulou A, Vagenakis GA, Benardot D, Leglise M, et al. Height velocity and skeletal maturation in elite female rhythmic gymnasts. J Clin Endocrinol Metab. 2001;86:5159–64.

    Article  CAS  PubMed  Google Scholar 

  11. Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Arch Dis Child. 1969;44:291–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Warren MP. The effects of exercise on pubertal progression and reproductive function in girls. J Clin Endocrinol Metab. 1980;51:1150–57.

    Article  CAS  PubMed  Google Scholar 

  13. Zacharias L, Wurtman RJ, Shatzoff M. Sexual maturation in contemporary American girls. Am J Obstet Gynecol. 1970;108:833–46.

    Article  CAS  PubMed  Google Scholar 

  14. Erladson MC, Sherar LB, Milwald RL, Miffulli N, Baxter-Jones AD. Growth and maturation of adolescent female gymnasts, swimmers, and tennis players. Med Sci Sports Exerc. 2008;40(1):34–42.

    Article  Google Scholar 

  15. Marcus R, Cann C, Madvij P, Minkoff J, Goddard M, Bayer M, et al. Menstrual function and bone mass in elite women distance runners. Ann Intern Med. 1985;102:158–63.

    Article  CAS  PubMed  Google Scholar 

  16. Baxter-Jones ADG, Helms P, Baines-Preece J, Preece M. Menarche in intensively trained gymnasts, swimmers and tennis players. Ann Hum Biol. 1994;21:407–15.

    Article  CAS  PubMed  Google Scholar 

  17. Peltenburg AL, Erich WBM, Bernink MJE, Zonderland ML, Huisveld IA. Biological maturation, body composition and growth of female gymnasts and control groups of schoolgirls and girls swimmers, aged 8 to 14 years: a cross-sectional survey of 1064 girls. Int J Sports Med. 1984;5:36–42.

    Article  CAS  PubMed  Google Scholar 

  18. Schtscherbyna A, Soares EA, de Oliveira FP, Ribeiro BG. Female athlete triad in elite swimmers of the city of Rio de Janeiro, Brazil. Nutrition. 2009;25(6):634–9.

    Article  PubMed  Google Scholar 

  19. Cobb KL, Bachrach LK, Greendale G, Marcus R, Neer RM, Nieves J, et al. Disordered eating, menstrual irregularity, and bone mineral density in female runners. Med Sci Sports Exerc. 2003;35(5):711–9.

    Article  PubMed  Google Scholar 

  20. Castelo-Branco C, Reina F, Montivero AD, Colodrón M, Vanrell JA. Influence of high-intensity training and of dietetic and anthropometric factors on menstrual cycle disorders in ballet dancers. Gynecol Endocrinol. 2006;22(1):31–5.

    Article  PubMed  Google Scholar 

  21. Gurd B, Klentrou P. Physical and pubertal development in young male gymnasts. J Appl Physiol. 2003;95(3):1011–5.

    Article  CAS  PubMed  Google Scholar 

  22. Baxter-Jones AD, Helms P, Maffulli N, Baines-Preece JC, Preece M. Growth and development of male gymnasts, swimmers, soccer and tennis players: a longitudinal study. Ann Hum Biol. 1995;22(5):381–94.

    Article  CAS  PubMed  Google Scholar 

  23. Frisch RE, Revelle R. Height and weight at menarche and a hypothesis of menarche. Arch Dis Child. 1971;46:695–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Frisch RE, McArthur JW. Menstrual cycles; Fatness as a determinant of minimum weight for height necessary for their maintenance or onset. Science. 1974;185:949–51.

    Article  CAS  PubMed  Google Scholar 

  25. Martos-Moreno GA, Chowen JA, Argente J. Metabolic signals in human puberty: effects of over and undernutrition. Mol Cell Endocrinol. 2010;324(1–2):70–81.

    Article  CAS  PubMed  Google Scholar 

  26. Moschos S, Chen JL, Mantzoros CS. Leptin and reproduction; a review. Fertil Steril. 2002;77(3):433–44.

    Article  PubMed  Google Scholar 

  27. Warren MP, Perlroth NE. The effects of intense exercise on the female reproductive system. J Endocrinol. 2001;170:3–11.

    Article  CAS  PubMed  Google Scholar 

  28. Torstveit MK, Sundgot-Borgen J. Participation in leanness sports but not training volume is associated with menstrual dysfunction: a national survey of 1276 elite athletes and controls. Br J Sport Med. 2005;39(3):141–7.

    Article  CAS  Google Scholar 

  29. Loucks AB, Mortola JSF, Girton L, Yen SS. Alterations in the hypothalamic-pituitary-ovarian and the hypothalamic-pituitary-adrenal axis in athletic women. J Clin Endocrinol Metab. 1989;68(2):402–11.

    Article  CAS  PubMed  Google Scholar 

  30. Redman LM, Loucks AB. Menstrual disorders in athletes. Sport Med. 2005;35(9):747–55.

    Article  Google Scholar 

  31. Trussel J. Statistical flaws in evidence for the Frisch hypothesis that fatness triggers menarche. Hum Biol. 1980;52:711–20.

    Google Scholar 

  32. Bronson FH, Manning JM. The energetic regulation of ovulation: a realistic role for body fat. Biol Reprod. 1991;44(6):945–50.

    Article  CAS  PubMed  Google Scholar 

  33. Loucks AB. Energy availability, not body fatness, regulates reproductive function in women. Exerc Sport Sci Rev. 2003;31(3):144–8.

    Article  PubMed  Google Scholar 

  34. Williams NI, Helmreichch DL, Parfitt DB, Caston-Balderrama AL, Cameron JL. Evidence for a causal role of low energy availability in the induction of menstrual cycle disturbances during strenuous exercise training. J Clin Endocrinol Metab. 2001;86:5184–93.

    Article  CAS  PubMed  Google Scholar 

  35. Loucks AB, Verdun M, Heath EM. Low energy availability, not stress of exercise, alters LH pulsatility in exercising women. J Appl Physiol. 1998;84:37–46.

    CAS  PubMed  Google Scholar 

  36. Miller KK, Grinspon S, Gleysteen S, Grieco KA, Ciampa J, Breu J, et al. Preservation of neuroendocrine control of reproductive function, despite severe undernutrition. J Clin Endocrinol Metab. 2004;89(9):4434–8.

    Article  CAS  PubMed  Google Scholar 

  37. Kopp W, Blum WF, von Prittwitz S, Ziegler A, Lübbert H, Emons G, et al. Low leptin levels predict amenorrhea in underweight and eating disordered females. Mol Psychiatry. 1997;2:335–40.

    Article  CAS  PubMed  Google Scholar 

  38. Launhlin GA, Yen SSC. Hypoleptinemia in women athletes: absence of diurnal rhythm with amenorrhea. J Clin Endocrinol Metab. 1997;82:318–21.

    Article  Google Scholar 

  39. Welt CK, Chan JL, Bullen J, Murphy R, Smith P, De Paoli AM, et al. Recombinant human leptin in women with hypothalamic amenorrhea. N Engl J Med. 2004;351:987–97.

    Article  CAS  PubMed  Google Scholar 

  40. Rodriguez-Pacheco F, Martinez-Fuentes AJ, Tovar S, Pinilla L, Tena-Sempere M, Dieguez C, et al. Regulation of pituitary cell function by adiponectin. Endocrinology. 2007;148:401–10.

    Article  CAS  PubMed  Google Scholar 

  41. LuM, Tang Q, Olefsky JM, Mellon PL, Webster NJ. Adiponectin activates adenosine monophosphate activated protein kinase and decreases luteinizing hormone secretion in L betaT2 gonadotropes. Mol Endocrinol. 2008;22:60–71.

    Google Scholar 

  42. Selye H. The effect of adaptation to various damaging agents on the female sex organs in the rats. Endocrinology. 1939;25:615–24.

    Article  CAS  Google Scholar 

  43. Chen MD, O’Byrne KT, Chiappini SE, Hotchkiss J, Knobil E. Hypoglycemic stress and the gonadotrophin-releasing hormone pulse generator activity in the rhesus monkey: the role of the ovary. Neuroendocrinology. 1992;56:666–73.

    Article  CAS  PubMed  Google Scholar 

  44. Chrousos GP, Torpy DJ, Gold PW. Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system: clinical implications. Ann Intern Med. 1998;129:229–40.

    Article  CAS  PubMed  Google Scholar 

  45. Bullen BA, Skrinar GS, Beitins IZ, von Mering G, Turnbull BA, McArthur JW. Induction of menstrual disorders by strenuous exercise in untrained women. N Engl J Med. 1985;312(21):1349–53.

    Article  CAS  PubMed  Google Scholar 

  46. Laughlin GA, Yen SSC. Nutritional and endocrine-metabolic aberrations in amenorrheic athletes. J Clin Endocrinol Metab. 1996;81(12):4301–9.

    CAS  PubMed  Google Scholar 

  47. Ding JH, Schecter CB, Drinkwater BL. High serum cortisol levels in exercise associated amenorrhea. Ann Intern Med. 1988;108:530–4.

    Article  CAS  PubMed  Google Scholar 

  48. Gindoff PR, Ferin M. Endogenous opioid peptides modulate the effect of corticotrophin-releasing factor on gonadotrophin release in the primate. Endocrinology. 1987;121:837–42.

    Article  CAS  PubMed  Google Scholar 

  49. Williams NI, Helmreichch DL, Parfitt DB, Caston-Balderrama AL, Cameron JL. Evidence for a causal role of low energy availability in the induction of menstrual cycle disturbances during strenuous exercise training. J Clin Endocrinol Metab. 2001;86:5184–93.

    Article  CAS  PubMed  Google Scholar 

  50. Loucks AB, Verdun M, Heath EM. Low energy availability, not stress of exercise, alters LH pulsatility in exercising women. J Appl Physiol. 1998;84:37–46.

    CAS  PubMed  Google Scholar 

  51. Pirke KM, Schweiger V, Laessle R, Dickhaut B, Schweiger M, Waechtler M. Dieting influences the menstrual cycle: vegetarian versus nonvegetarian diet. Fertil Steril. 1986;46:1083–8.

    Article  CAS  PubMed  Google Scholar 

  52. Barr SI, Janelle KC, Prior JC. Vegetarian vs nonvegetarian diets, dietary restraint, and subclinical ovulatory disturbances: prospective 6-mo study. Am J Clin Nutr. 1994;60:887–94.

    CAS  PubMed  Google Scholar 

  53. De Souza MJ, Metzger DA. Reproductive dysfunction in amenorrheic athletes and anorexic patients: a review. Med Sci Sports Exerc. 1991;23:995–1007.

    Article  PubMed  Google Scholar 

  54. Rogol AD, Weltman JY, Seip RL, Seip RL, Snead DB, Levine S, et al. Durability of the reproductive axis in eumenorrheic women during one year of endurance training. J Appl Physiol. 1992;72:1571–80.

    CAS  PubMed  Google Scholar 

  55. Frisch RE, Wyshak G, Vincent L. Delayed menarche and amenorrhea in ballet dancers. N Engl J Med. 1980;303:17–9.

    Article  CAS  PubMed  Google Scholar 

  56. Sanborn CF, Martin BJ, Wagner WW. Is athletic amenorrhea specific to runners? Am J Obstet Gynecol. 1982;143:859–61.

    Article  CAS  PubMed  Google Scholar 

  57. Bonen A. Recreational exercise does not impair menstrual cycles: a prospective study. Int J Sports Med. 1992;13:110–20.

    Article  CAS  PubMed  Google Scholar 

  58. Rosetta L. Female reproductive dysfunction and intense physical training. Oxf Rev Reprod Biol. 1993;15:113–41.

    CAS  PubMed  Google Scholar 

  59. Bennell KL, Malcolm SA, Khan KM, Thomas SA, Reid SJ, Brukner PD, et al. Bone mass and bone turnover in power athletes, endurance athletes, and controls. A 12 month longitudinal study. Bone. 1997;20(5):477–84.

    Article  CAS  PubMed  Google Scholar 

  60. Sanborn CF, Albrecht BH, Wagner WW Jr. Athletic amenorrhea: lack of association with body fat. Med Sci Sports Exerc. 1987;19:207–12.

    CAS  PubMed  Google Scholar 

  61. Shangold MM, Levine HS. The effect of marathon training upon menstrual function. Am J Obstet Gynecol. 1982;143:862–9.

    Article  CAS  PubMed  Google Scholar 

  62. De Souza MJ, Miler BE, Loucks AB, Luciano AA, Pescatello LS, Campbell CG, et al. High frequency of luteal phase deficiency and anovulation in recreational women runners: blunted elevation in follicle-stimulating hormone observed during luteal-follicular transition. J Clin Endocrinol Metab. 1998;83:4220–32.

    PubMed  Google Scholar 

  63. Lucas JA, Lucas PR, Vogel S, Gamble GD, Evans MC, Reid IR. Effect of sub-elite competitive running on bone density, body composition and sexual maturity of adolescents females. Osteoporos Int. 2003;14(10):848–56.

    Article  PubMed  Google Scholar 

  64. Constantini NW, Warren MP. Menstrual dysfunction in swimmers: a distinct entity. J Clin Endocrinol Metab. 1995;80(9):2740–4.

    CAS  PubMed  Google Scholar 

  65. Theodoropoulou A, Markou K, Vagenakis GA, Benardot D, Leglise M, Kourounis G, et al. Delayed but normally progressed puberty is more pronounced in artistic compared with rhythmic elite gymnasts due to the intensity of training. J Clin Endocrinol Metab. 2005;90(11):6022–7.

    Article  CAS  PubMed  Google Scholar 

  66. De Souza MJ, West SL, Jamal SA, Hawker GA, Gundberg CM, Williams NI. The presence of both an energy deficiency and estrogen deficiency exacerbate alterations of bone metabolism in exercising women. Bone. 2008;43:140–8.

    Article  PubMed  Google Scholar 

  67. Marcus R. Mechanisms of exercise effects on bone. In: Bilezikian JP, Raaaaisz LG, Rodan GA, editors Principles of bone biology. San Diego: Academic; 1996. p. 1135–46.

    Google Scholar 

  68. Katzman DK, Bachrach LK, Carter DR, Marcus R. Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab. 1991;73:1332–9.

    Article  CAS  PubMed  Google Scholar 

  69. Fehily AM, Coles RJ, Evans WD, et al. Factors affecting bone density in young adults. Am J Clin Nutr. 1992;56:579–86.

    CAS  PubMed  Google Scholar 

  70. Christo K, Prabhakaran R, Lamparello B, Cord J, Miller KK, Goldstein MA, et al. Bone metabolism in adolescent athletes with amenorrhea, athletes with eumenorrhea, and control subjects. Pediatrics. 2008;121:1127–36.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Maïmoun L, Coste O, Galtier F, Mura T, Mariano-Goulart D, Paris F, et al. Bone mineral density acquisition in peripubertal female rhythmic gymnasts is directly associated with plasma IGF1/IGF-binding protein 3 ratio. Eur J Endocrinol. 2010;163(1):157–64.

    Article  PubMed  Google Scholar 

  72. Abad V, Chrousos G, Reynolds J, Nieman LK, Hill SC, Weinstein RS, et al. Glucocorticoid excess during adolescence leads to a major persistent deficit in bone mass and an increase in central body fat. J Bone Miner Res. 2001;16(10):1879–85.

    Article  CAS  PubMed  Google Scholar 

  73. Misra M. Bone density in the adolescent athlete. Rev Endocr Metab Disord. 2008;9:139–44.

    Article  PubMed  Google Scholar 

  74. Christo K, Cord J, Mendes N, Miller KK, Goldstein MA, Klibanski A, et al. Acylated ghrelin and leptin in adolescent athletes with amenorrhea, eumenorrheic athletes and controls: a cross sectional study. Clin Endocrinol (Oxf). 2008;69(4):628–33.

    Article  CAS  Google Scholar 

  75. Miller KK, Parulekar MS, Schoenfeld E, Anderson E, Hubbard J, Klibanski A, et al. Decreased leptin levels in normal weight women with hypothalamic amenorrhea: the effects of body composition and nutritional intake. J Clin Endocrinol Metab. 1998;83:2309–12.

    CAS  PubMed  Google Scholar 

  76. Drinkwater BL, Nilson K, Chesnut CH III, Bremner WJ, Shainholtz S, Southworth MB. Bone mineral content of amenorrheic and eumenorrheic athletes. N Engl J Med. 1984;311:277–81.

    Article  CAS  PubMed  Google Scholar 

  77. Marcus R, Cann CE, Madvig P, Minkoff J, Goddard M, Bayer M, et al. Menstrual function and bone mass in elite women distance runners. Ann Intern Med. 1985;102:158–63.

    Article  CAS  PubMed  Google Scholar 

  78. Ackerman KE, Nazem T, Chapko D, Russell M, Mendes N, Taylor AP, et al. Bone microarchitecture is impaired in adolescent amenorrheic athletes compared with eumenorrheic athletes and nonathletic controls. J Clin Endocrinol Metab. 2011;96(10):3123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Drinkwater BL, Bruemner B, Chesnut CH 3rd. Menstrual history as a determinant of current bone density in young athletes. JAMA. 1990;263:545–8.

    Article  CAS  PubMed  Google Scholar 

  80. Keen AD, Drinkwater BL. Irreversible bone loss in former amenorrheic athletes. Osteoporos Int. 1997;7:311–5.

    Article  CAS  PubMed  Google Scholar 

  81. Warren MP, Brooks-Gunn J, Fox RP, Holderness CC, Hyle EP, Hamilton WG. Osteopenia in exercise associated amenorrhea using ballet dancers as a model: a longitudinal study. J Clin Endocrinol Metab. 2002;87:3162–8.

    Article  CAS  PubMed  Google Scholar 

  82. Warren MP, Brooks-Gunn J, Hamilton LH. Scoliosis and fractures in young ballet dancers. Relation to delayed menarche and secondary amenorrhea. N Engl J Med. 1986;314(21):1348–53.

    Article  CAS  PubMed  Google Scholar 

  83. Kenanidis E, Potoupnis ME, Papavasiliou KA, Sayegh FE, Kapetanos GA. Adolescent idiopathic scoliosis and exercising: is there truly a liaison? Spine. 2008;33(20):2160–5.

    Article  PubMed  Google Scholar 

  84. Myburgh KH, Hutchins J, Fataar AB, Hough SF, Noakes TD. Low bone density is an etiologic factor for stress fractures in athletes. Ann Intern Med. 1990;113:754–9.

    Article  CAS  PubMed  Google Scholar 

  85. Bemben DA, Buchanan TD, Bemben MG, Knehans AW. Influence of type of mechanical loading, menstrual status and training season on bone density in young women athletes. J Strength Cond Res. 2004;18(2):220–6.

    PubMed  Google Scholar 

  86. Zanker CL, Osborne C, Cooke CB, Oldroyd B, Truscott JG. Energy balance, bone turnover and menstrual history of sedentary female former gymnasts, aged 20–32 years. Osteoporos Int. 2004;15(2):145–54.

    Article  CAS  PubMed  Google Scholar 

  87. Nichols JF, Rauh MJ, Barrack MT, Barkai HS. Bone mineral density in female high school athletes: interactions of menstrual function and type of mechanical loading. Bone. 2007;41(3):371–7.

    Article  PubMed  Google Scholar 

  88. Markou KB, Mylonas P, Theodoropoulou A, Kontogiannis A, Leglise M, Vagenakis AG, et al. The influence of intensive physical exercise on bone acquisition in adolescent elite female and male artistic gymnasts. J Clin Endocrinol Metab. 2004;89:4383–7.

    Article  CAS  PubMed  Google Scholar 

  89. Tournis S, Michopoulou E, Fatouros IG, Paspati I, Michalopoulou M, Raptou P, et al. Effect of rhythmic gymnastics on volumetric bone mineral density and bone geometry in premenarcheal female athletes and controls. J Clin Endocrinol Metab. 2010;95(6):2755–62.

    Article  CAS  PubMed  Google Scholar 

  90. De Souza MJ, Miller BE. The effect of endurance training on reproductive function in male runners. A ‘‘volume threshold’’ hypothesis. Sports Med. 1997;23:357–73.

    Article  PubMed  Google Scholar 

  91. Vaamonde D, Silva-Grigoletto ME D, García-Manso JM, Vaamonde-Lemos R, Swanson RJ, Oehninger SC. Response of semen parameters to three training modalities. Fertil Steril. 2009;92(6):1941–6.

    Article  PubMed  Google Scholar 

  92. Ayers JWT, Komesu V, Romani T, Ansbacher R. Anthropomorphic, hormone, and psychologic correlates of semen quality in endurance-trained male athletes. Fertil Steril. 1985;43:917–21.

    Article  CAS  PubMed  Google Scholar 

  93. Gebreegziabher Y, Marcos E, McKinon W, Rogers G. Sperm characteristics of endurance trained subjects. Int J Sports Med. 2004;25:247–51.

    Article  CAS  PubMed  Google Scholar 

  94. Daly RM, Rich PA, Klein R. Hormonal responses to physical training in high-level peripubertal male gymnasts. Eur J Appl Physiol Occup Physiol. 1998;79:74–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neoklis A. Georgopoulos MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Georgopoulos, N., Roupas, N. (2016). Impact of Intense Physical Activity on Puberty and Reproductive Potential of Young Athletes. In: Vaamonde, D., du Plessis, S., Agarwal, A. (eds) Exercise and Human Reproduction. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3402-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3402-7_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3400-3

  • Online ISBN: 978-1-4939-3402-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics