Skip to main content

A Cohesive and Integrated Platform for Immunogenicity Prediction

  • Protocol
  • First Online:
Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1404))

Abstract

In silico methods for immunogenicity prediction mine the enormous quantity of data arising from deciphered genomes and proteomes to identify immunogenic proteins. While high and productive immunogenicity is essential for vaccines, therapeutic proteins and monoclonal antibodies should be minimally immunogenic. Here, we present a cohesive platform for immunogenicity and MHC class I and/or II binding affinity prediction. The platform integrates three quasi-independent modular servers: VaxiJen, EpiJen, and EpiTOP. VaxiJen (http://www.ddg-pharmfac.net/vaxijen) predicts immunogenicity of proteins of different origin; EpiJen (http://www.ddg-pharmfac.net/epijen) predicts peptide binding to MHC class I proteins; and EpiTOP (http://www.ddg-pharmfac.net/epitop) predicts peptide binding to MHC class II proteins. The platform is freely accessible and user-friendly. The protocol for immunogenicity prediction is demonstrated by selecting immunogenic proteins from Mycobacterium tuberculosis and predicting how the peptide epitopes within them bind to MHC class I and class II proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang J, Honda W (2006) CED: a conformational epitope database. BMC Immunol 7:7

    Article  CAS  Google Scholar 

  2. Madden DR (1995) The three-dimensional structure of peptide-MHC complexes. Annu Rev Immunol 13:587–622

    Article  CAS  Google Scholar 

  3. Robinson J, Halliwell JA, McWilliam H, Lopez R, Parham P, Marsh SGE (2013) The IMGT/HLA database. Nucleic Acids Res 39:D1171–D1176

    Article  Google Scholar 

  4. Janeway CA (2001) Immunobiology: the immune system in health and disease. Churchill Livingstone, New York, NY

    Google Scholar 

  5. Jardetzky TS, Brown JH, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1996) Crystallographic analysis of endogenous peptides associated with HLA-DR1 suggests a common, polyproline II-like conformation for bound peptides. Proc Natl Acad Sci U S A 93:734–738

    Article  CAS  Google Scholar 

  6. Letvin NL, Walker BD (2001) HIV versus the immune system: another apparent victory for the virus. J Clin Invest 107:273–275

    Article  CAS  Google Scholar 

  7. Sirskyj D, Diaz-Mitoma F, Golshani A, Kumar A, Azizi A (2011) Innovative bioinformatic approaches for developing peptide-based vaccines against hypervariable viruses. Immunol Cell Biol 89:81–89

    Article  CAS  Google Scholar 

  8. Flower DR, Macdonald IK, Ramakrishnan K, Davies MN, Doytchinova IA (2010) Computer-aided selection of candidate vaccine antigens. Immunome Res S2:S1

    Article  Google Scholar 

  9. Patronov A, Doytchinova I (2013) T-cell epitope vaccine design by immunoinformatics. Open Biol 3:120139

    Article  Google Scholar 

  10. Flower DR (2013) Designing immunogenic peptides. Nat Chem Bio 9:749–753

    Article  CAS  Google Scholar 

  11. Doytchinova IA, Flower DR (2007) Identifying candidate subunit vaccines using an alignment-independent method based on principal amino acid properties. Vaccine 25:856–866

    Article  CAS  Google Scholar 

  12. Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 8:4

    Article  Google Scholar 

  13. Doytchinova IA, Flower DR (2008) Bioinformatic approach for identifying parasite and fungal candidate subunit vaccines. Open Vaccine J 1:22–26

    Article  CAS  Google Scholar 

  14. Nyström Å, Andersson PM, Lundstedt T (2000) Multivariate data analysis of topographically modified α-melanotropin analogues using auto and cross auto covariances (ACC). Quant Struct Act Relat 19:264–269

    Article  Google Scholar 

  15. Nazarian S, Mousavi Gargari SL, Rasooli I, Amani J, Bagheri S, Alerasool M (2012) An in silico chimeric multi subunit vaccine targeting virulence factors of enterotoxigenic Escherichia coli (ETEC) with its bacterial inbuilt adjuvant. J Microbiol Methods 90:36–45

    Article  CAS  Google Scholar 

  16. Maritz-Olivier C, van Zyl W, Stutzer C (2012) A systematic, functional genomics, and reverse vaccinology approach to the identification of vaccine candidates in the cattle tick, Rhipicephalus microplus. Ticks Tick Borne Dis 3:179–187

    Article  Google Scholar 

  17. Rai J, Lok KI, Mok CY, Mann H, Noor M, Patel P, Flower DR (2012) Immunoinformatic evaluation of multiple epitope ensembles as vaccine candidates: E. coli 536. Bioinformation 8:272–275

    Article  Google Scholar 

  18. Gededzha MP, Mphahlele MJ, Selabe SG (2014) Prediction of T-cell epitopes of hepatitis C virus genotype 5a. Virol J 11:187

    Article  Google Scholar 

  19. Kanagavel M, Shanmughapriya S, Anbarasu K, Natarajaseenivasan K (2014) B-cell-specific peptides of Leptospira interrogans LigA for diagnosis of patients with acute leptospirosis. Clin Vaccine Immunol 21:354–359

    Article  Google Scholar 

  20. Doytchinova IA, Flower DR (2006) Class I T cell epitope prediction: improvements using a combination of proteasome cleavage, TAP affinity, and MHC binding. Mol Immun 43:2037–2044

    Article  CAS  Google Scholar 

  21. Doytchinova IA, Guan P, Flower DR (2006) EpiJen: a server for multi-step T cell epitope prediction. BMC Bioinformatics 7:131

    Article  Google Scholar 

  22. Dimitrov I, Garnev P, Flower DR, Doytchinova I (2010) Peptide binding to the HLA-DRB1 sypertype: a proteochemometric analysis. Eur J Med Chem 45:236–243

    Article  CAS  Google Scholar 

  23. Dimitrov IP, Garnev P, Flower DR, Doytchinova I (2010) EpiTOP – a proteochemometric tool for MHC class II binding prediction. Bioinformatics 26:2066–2068

    Article  CAS  Google Scholar 

  24. Lapinsh M, Prusis P, Gutcaits A, Lundstedt T, Wikberg JE (2001) Development of proteo-chemometrics: a novel technology for the analysis of drug-receptor interactions. Biochim Biophys Acta 1525:180–190

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irini Doytchinova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dimitrov, I., Atanasova, M., Patronov, A., Flower, D.R., Doytchinova, I. (2016). A Cohesive and Integrated Platform for Immunogenicity Prediction. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 1404. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-3389-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3389-1_50

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-3388-4

  • Online ISBN: 978-1-4939-3389-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics