Skip to main content

Selection of Vaccine Candidates for Fish Pasteurellosis Using Reverse Vaccinology and an In Vitro Screening Approach

  • Protocol
  • First Online:
Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1404))

Abstract

The advent of new technologies in recent years has revolutionized the methods by which pathogens are studied and at the same time it has provided new tools to design vaccines against infections for which vaccine development has so far been unsuccessful. The availability of genomic data provides the basis for the reverse vaccinology approach, a biotechnological strategy that uses bioinformatics analysis of microbial genome data for the in silico selection of potential vaccine candidates for the development of protein-based vaccines. The antigens selected by reverse vaccinology can be produced as recombinant proteins and subjected to further in vitro screening assays before in vivo experiments to assess immunogenicity and protection. The reverse vaccinology approach has been applied to several pathogens affecting human health, but also to marine bacteria, including Photobacterium damselae subsp. piscicida causing significant harm in marine aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Romalde JL (2002) Photobacterium damselae subsp. piscicida: an integrated view of a bacterial fish pathogen. Int Microbiol 5:3–9

    Article  Google Scholar 

  2. Barnes AC, dos Santos NM, Ellis AE (2005) Update on bacterial vaccines: Photobacterium damselae subsp. piscicida. Dev Biol (Basel) 121:75–84

    CAS  Google Scholar 

  3. Andreoni F, Magnani M (2014) Photobacteriosis: prevention and diagnosis. J Immunol Res 2014:793817

    Article  Google Scholar 

  4. Ho LP, Chang CJ, Liu HC et al (2014) Evaluating the protective efficacy of antigen combinations against Photobacterium damselae ssp. piscicida infections in cobia, Rachycentron canadum L. J Fish Dis 37:51–62

    Article  CAS  Google Scholar 

  5. Kato G, Yamashita K, Kondo H, Hirono I (2015) Protective efficacy and immune responses induced by a DNA vaccine encoding codon-optimized PPA1 against Photobacterium damselae subsp. piscicida in Japanese flounder. Vaccine 33:1040–1045

    Article  CAS  Google Scholar 

  6. Pizza M, Scarlato V, Masignani V et al (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287:1816–1820

    Article  CAS  Google Scholar 

  7. Wizemann TM, Adamou JE, Langermann S (1999) Adhesins as targets for vaccine development. Emerg Infect Dis 5:395–403

    Article  CAS  Google Scholar 

  8. Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679

    Article  CAS  Google Scholar 

  9. Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618

    Article  CAS  Google Scholar 

  10. Schaffer AA, Aravind L, Madden TL et al (2001) Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29:2994–3005

    Article  CAS  Google Scholar 

  11. Marchler-Bauer A, Lu S, Anderson JB et al (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229

    Article  CAS  Google Scholar 

  12. Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33:W686–W689

    Article  CAS  Google Scholar 

  13. Lagesen K, Hallin P, Rodland EA et al (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108

    Article  CAS  Google Scholar 

  14. Yu NY, Wagner JR, Laird MR et al (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615

    Article  CAS  Google Scholar 

  15. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  Google Scholar 

  16. Hofmann K, Stoffel W (1993) TMbase—a database of membrane spanning proteins segments. Biol Chem Hoppe-Seyler 374:166

    Google Scholar 

  17. Juncker AS, Willenbrock H, Von Heijne G et al (2003) Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci 12:1652–1662

    Article  CAS  Google Scholar 

  18. Madan Badu M, Sankaran K (2002) DOLOP—database of bacterial lipoproteins. Bioinformatics 18:641–643

    Article  Google Scholar 

  19. Andreoni F, Boiani R, Serafini G et al (2013) Isolation of a novel gene from Photobacterium damselae subsp. piscicida and analysis of the recombinant antigen as promising vaccine candidate. Vaccine 31:820–826

    Article  CAS  Google Scholar 

  20. Scarselli M, Giuliani MM, du-Bobie J et al (2005) The impact of genomics on vaccine design. Trends Biotechnol 23:84–91

    Article  CAS  Google Scholar 

  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Fanoateneo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Andreoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Andreoni, F., Amagliani, G., Magnani, M. (2016). Selection of Vaccine Candidates for Fish Pasteurellosis Using Reverse Vaccinology and an In Vitro Screening Approach. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 1404. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-3389-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3389-1_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-3388-4

  • Online ISBN: 978-1-4939-3389-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics