Skip to main content

Retrotransposon Capture Sequencing (RC-Seq): A Targeted, High-Throughput Approach to Resolve Somatic L1 Retrotransposition in Humans

  • Protocol
  • First Online:
Transposons and Retrotransposons

Abstract

Mobile genetic elements (MGEs) are of critical importance in genomics and developmental biology. Polymorphic and somatic MGE insertions have the potential to impact the phenotype of an individual, depending on their genomic locations and functional consequences. However, the identification of polymorphic and somatic insertions among the plethora of copies residing in the genome presents a formidable technical challenge. Whole genome sequencing has the potential to address this problem; however, its efficacy depends on the abundance of cells carrying the new insertion. Robust detection of somatic insertions present in only a subset of cells within a given sample can also be prohibitively expensive due to a requirement for high sequencing depth. Here, we describe retrotransposon capture sequencing (RC-seq), a sequence capture approach in which Illumina libraries are enriched for fragments containing the 5′ and 3′ termini of specific MGEs. RC-seq allows the detection of known polymorphic insertions present in an individual, as well as the identification of rare or private germline insertions not previously described. Furthermore, RC-seq can be used to detect and characterize somatic insertions, providing a valuable tool to elucidate the extent and characteristics of MGE activity in healthy tissues and in various disease states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor TH, Gitlin SA, Patrick JL et al (2014) The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans. Hum Reprod Update 20:571–581

    Article  CAS  PubMed  Google Scholar 

  2. Stern C (1936) Somatic crossing over and segregation in Drosophila melanogaster. Genetics 21:625–730

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Hozumi N, Tonegawa S (1976) Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. Proc Natl Acad Sci U S A 73:3628–3632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Muramatsu M, Kinoshita K, Fagarasan S et al (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553–563

    Article  CAS  PubMed  Google Scholar 

  5. Gilbert N, Lutz S, Morrish TA et al (2005) Multiple fates of L1 retrotransposition intermediates in cultured human cells. Mol Cell Biol 25:7780–7795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Garcia-Perez JL, Doucet AJ, Bucheton A et al (2007) Distinct mechanisms for trans-mediated mobilization of cellular RNAs by the LINE-1 reverse transcriptase. Genome Res 17:602–611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kano H, Godoy I, Courtney C et al (2009) L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. Genes Dev 23:1303–1312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Muotri AR, Chu VT, Marchetto MC et al (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435:903–910

    Article  CAS  PubMed  Google Scholar 

  9. McConnell MJ, Lindberg MR, Brennand KJ et al (2013) Mosaic copy number variation in human neurons. Science 342:632–637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kapitonov VV, Jurka J (2005) RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol 3, e181

    Article  PubMed Central  PubMed  Google Scholar 

  11. Levis RW, Ganesan R, Houtchens K et al (1993) Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75:1083–1093

    Article  CAS  PubMed  Google Scholar 

  12. Baillie JK, Barnett MW, Upton KR et al (2011) Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479:534–537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH Jr (1996) High frequency retrotransposition in cultured mammalian cells. Cell 87:917–927

    Article  CAS  PubMed  Google Scholar 

  14. Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35:41–48

    Article  CAS  PubMed  Google Scholar 

  15. Raiz J, Damert A, Chira S et al (2012) The non-autonomous retrotransposon SVA is trans-mobilized by the human LINE-1 protein machinery. Nucleic Acids Res 40:1666–1683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Jurka J (1997) Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci U S A 94:1872–1877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Luan DD, Korman MH, Jakubczak JL et al (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:595–605

    Article  CAS  PubMed  Google Scholar 

  18. Ostertag EM, Kazazian HH Jr (2001) Twin priming: a proposed mechanism for the creation of inversions in L1 retrotransposition. Genome Res 11:2059–2065

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Morrish TA, Gilbert N, Myers JS et al (2002) DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet 31:159–165

    Article  CAS  PubMed  Google Scholar 

  20. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  21. Kazazian HH Jr, Wong C, Youssoufian H et al (1988) Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332:164–166

    Article  CAS  PubMed  Google Scholar 

  22. Huang CR, Schneider AM, Lu Y et al (2010) Mobile interspersed repeats are major structural variants in the human genome. Cell 141:1171–1182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Ewing AD, Kazazian HH Jr (2010) High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. Genome Res 20:1262–1270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Stewart C, Kural D, Stromberg MP et al (2011) A comprehensive map of mobile element insertion polymorphisms in humans. PLoS Genet 7, e1002236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Faulkner GJ (2011) Retrotransposons: mobile and mutagenic from conception to death. FEBS Lett 585:1589–1594

    Article  CAS  PubMed  Google Scholar 

  26. Hancks DC, Kazazian HH Jr (2013) Active human retrotransposons: variation and disease. Curr Opin Genet Dev 22:191–203

    Article  Google Scholar 

  27. Muotri AR, Marchetto MC, Coufal NG et al (2010) L1 retrotransposition in neurons is modulated by MeCP2. Nature 468:443–446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Faulkner GJ, Kimura Y, Daub CO et al (2009) The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 41:563–571

    Article  CAS  PubMed  Google Scholar 

  29. Coufal NG, Garcia-Perez JL, Peng GE et al (2009) L1 retrotransposition in human neural progenitor cells. Nature 460:1127–1131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Belancio VP, Roy-Engel AM, Pochampally RR et al (2010) Somatic expression of LINE-1 elements in human tissues. Nucleic Acids Res 38:3909–3922

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Cost GJ, Golding A, Schlissel MS et al (2001) Target DNA chromatinization modulates nicking by L1 endonuclease. Nucleic Acids Res 29:573–577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Richardson SR, Morell S, Faulkner GJ (2014) L1 retrotransposons and somatic mosaicism in the brain. Annu Rev Genet 48:1–27

    Article  CAS  PubMed  Google Scholar 

  33. Shukla R, Upton KR, Munoz-Lopez M et al (2013) Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell 153:101–111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Upton KR, Gerhardt DJ, Jesuadian JS et al (2015) Ubiquitous L1 mosaicism in hippocampal neurons. Cell 161:228-239

    Google Scholar 

  35. Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics (Oxford) 27:2957–2963

    Article  CAS  Google Scholar 

  36. Li R, Yu C, Li Y et al (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics (Oxford) 25:1966–1967

    Article  CAS  Google Scholar 

  37. Dombroski BA, Scott AF, Kazazian HH Jr (1993) Two additional potential retrotransposons isolated from a human L1 subfamily that contains an active retrotransposable element. Proc Natl Acad Sci U S A 90:6513–6517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kielbasa SM, Wan R, Sato K et al (2011) Adaptive seeds tame genomic sequence comparison. Genome Res 21:487–493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

G.J.F. acknowledges the support of an NHMRC Career Development Fellowship (GNT1045237). F.J.S-L. was supported by a postdoctoral fellowship from the Alfonso Martín Escudero Foundation (Spain). Work in the Faulkner laboratory was funded by Australian NHMRC Project grants GNT1042449, GNT1045991, GNT1067983 and GNT1068789, as well as the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant agreement No. 259743 underpinning the MODHEP consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey J. Faulkner Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sanchez-Luque, F.J., Richardson, S.R., Faulkner, G.J. (2016). Retrotransposon Capture Sequencing (RC-Seq): A Targeted, High-Throughput Approach to Resolve Somatic L1 Retrotransposition in Humans. In: Garcia-Pérez, J. (eds) Transposons and Retrotransposons. Methods in Molecular Biology, vol 1400. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3372-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3372-3_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3370-9

  • Online ISBN: 978-1-4939-3372-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics