Skip to main content

Hybridization of Environmental Microbial Community Nucleic Acids by GeoChip

  • Protocol
  • First Online:
Microbial Environmental Genomics (MEG)

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1399))

Abstract

Functional gene arrays, like the GeoChip, allow for the study of tens of thousands of genes in a single assay. The GeoChip array (5.0) contains probes for genes involved in geochemical cycling (N, C, S, and P), metal homeostasis, stress response, organic contaminant degradation, antibiotic resistance, secondary metabolism, and virulence factors as well as genes specific for fungi, protists, and viruses. Here, we briefly describe GeoChip design strategies (gene selection and probe design) and discuss minimum quantity and quality requirements for nucleic acids. We then provide detailed protocols for amplification, labeling, and hybridization of samples to the GeoChip.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Furhman JA, Campbell L (1998) Marine ecology: microbial microdiversity. Nature 393:410–411

    Article  Google Scholar 

  3. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Wu L, Thompson DK, Li G et al (2001) Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl Environ Microbiol 67:5780–5790

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. He Z, Gentry TJ, Schadt CW et al (2007) GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J 1:67–77

    Article  PubMed  CAS  Google Scholar 

  6. He Z, Deng Y, Van Nostrand JD et al (2010) GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. ISME J 4:1167–1179

    Article  PubMed  CAS  Google Scholar 

  7. Tu Q, Yu H, He Z et al (2014) GeoChip 4: a functional gene arrays-based high throughput environmental technology for microbial community analysis. Mol Ecol Resour 14:914–928

    PubMed  CAS  Google Scholar 

  8. He Z, Wu LY, Li XY et al (2005) Empirical establishment of oligonucleotide probe design criteria. Appl Environ Microbiol 71:3753–3760

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Liebich J, Schadt CW, Chong SC et al (2006) Improvement of oligonucleotide probe design criteria for functional gene microarrays in environmental applications. Appl Environ Microbiol 72:1688–1691

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Li X, He Z, Zhou J (2005) Selection of optimal oligonucleotide probes for microarrays using multiple criteria, global alignment and parameter estimation. Nucleic Acids Res 33:6114–6123

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Ning J, Liebich J, Kästner M et al (2009) Different influences of DNA purity indices and quantity on PCR-based DGGE and functional gene microarray in soil microbial community study. Appl Microbiol Biotechnol 82:983–993

    Article  PubMed  CAS  Google Scholar 

  12. NanoDrop (2007) 260/280 and 260/230 Ratios NanoDrop® ND-1000 and ND-8000 8-Sample Spectrophotometers. Technical Support Bulletin T009

    Google Scholar 

  13. Liang Y, He Z, Wu L et al (2010) Development of a common oligonucleotide reference standard (CORS) for microarray data normalization and comparison across different microbial communities. Appl Environ Microbiol 76:1088–1094

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Xie J, Wu L, Van Nostrand JD et al (2012) Improvements on environmental DNA extraction and purification procedures for matagenomic analysis. J Cent South Univ 19:3055–3063

    Article  CAS  Google Scholar 

  15. Wu L, Liu X, Schadt CW et al (2006) Microarray-based analysis of submicrogram quantities of microbial community DNAs by using whole-community genome amplification. Appl Environ Microbiol 72:4931–4941

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Gao H, Yang ZK, Gentry TJ et al (2007) Microarray-based analysis of microbial community RNAs by whole-community RNA amplification. Appl Environ Microbiol 73:563–571

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Zhang K, Martiny AC, Reppas NB et al (2006) Sequencing genomes from single cells by polymerase cloning. Nat Biotechnol 24:680–686

    Article  PubMed  CAS  Google Scholar 

  18. Khan AU, Mei YH, Wilson T (1992) A proposed function for spermine and spermidine: protection of replicating DNA against damage by singlet oxygen. Proc Natl Acad Sci U S A 89:11426–11427

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Marceau AH (2012) Functions of single-strand DNA-binding proteins in DNA replication, recombination, and repair. Methods Mol Biol 922:1–21

    PubMed  CAS  Google Scholar 

  20. Agilent (2012) Agilent Oligonucleotide Array-Based CGH for Genomic DNA Analysis. Version 3.4, July 2012. Agilent Technologies

    Google Scholar 

  21. Deng Y, He Z (2014) Microarray data analysis. In: He Z (ed) Microarrays: current technology, innovations and applications. Caister Academic Press, Norwich, UK, http://www.horizonpress.com/microarrays2

    Google Scholar 

  22. Luo Y, Hui D, Zhang D (2006) Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87:53–63

    Article  PubMed  Google Scholar 

  23. ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179

    Article  Google Scholar 

  24. Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multi-species responses in multi-factorial ecological experiments. Ecol Monogr 69:1–24

    Article  Google Scholar 

  25. Økland RH, Eilertsen O (1994) Canonical correspondence analysis with variation partitioning: some comments and an application. J Veg Sci 5:117–126

    Article  Google Scholar 

  26. Ramette A, Tiedje JM (2007) Multiscale responses of microbial life in spatial distance and environmental heterogeneity in a patchy ecosystem. Proc Natl Acad Sci U S A 104:2761–2766

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Sambrook J, Russell DW (2001) Molecular cloning a laboratory manual, vol 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  28. Fare TL, Coffey EM, Dai H (2003) Effects of atmospheric ozone on microarray data quality. Anal Chem 75:4672–4675

    Article  PubMed  CAS  Google Scholar 

  29. Branham WS, Melvin CD, Han T et al (2007) Elimination of laboratory ozone leads to a dramatic improvement in the reproducibility of microarray gene expression measurements. BMC Biotechnol 7:8

    Article  PubMed  PubMed Central  Google Scholar 

  30. Byerly S, Sundin K, Raja R et al (2009) Effects of ozone exposure during microarray posthybridization washes and scanning. J Mol Diagn 11:590–597

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgement

Efforts for writing this Chapter were supported by the Department of Energy’s Carbon Cycling program (DE-SC0004601 and DE-SC0010715).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jizhong Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Van Nostrand, J.D., Yin, H., Wu, L., Yuan, T., Zhou, J. (2016). Hybridization of Environmental Microbial Community Nucleic Acids by GeoChip. In: Martin, F., Uroz, S. (eds) Microbial Environmental Genomics (MEG). Methods in Molecular Biology, vol 1399. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3369-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3369-3_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3367-9

  • Online ISBN: 978-1-4939-3369-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics