Skip to main content

Toll-Like Receptor Interactions Measured by Microscopic and Flow Cytometric FRET

  • Protocol
  • First Online:
Toll-Like Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1390))

Abstract

Protein–protein interactions regulate biological networks. The most proximal events that initiate signal transduction frequently are receptor dimerization or conformational changes in receptor complexes. Toll-like receptors (TLRs) are transmembrane receptors that are activated by a number of exogenous and endogenous ligands. Most TLRs can respond to multiple ligands and the different TLRs recognize structurally diverse molecules ranging from proteins, sugars, lipids, and nucleic acids. TLRs can be expressed on the plasma membrane or in endosomal compartments and ligand recognition thus proceeds in different microenvironments. Not surprisingly, distinctive mechanisms of TLR receptor activation have evolved. A detailed understanding of the mechanisms of TLR activation is important for the development of novel synthetic TLR activators or pharmacological inhibitors of TLRs. Confocal laser scanning microscopy combined with GFP technology allows the direct visualization of TLR expression in living cells. Fluorescence resonance energy transfer (FRET) measurements between two differentially tagged proteins permit the study of TLR interaction, and distances between receptors in the range of molecular interactions can be measured and visualized. Additionally, FRET measurements combined with confocal microscopy provide detailed information about molecular interactions in different subcellular localizations. These techniques permit the dynamic visualization of early signaling events in living cells and can be utilized in pharmacological or genetic screens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys 437:55–75

    Article  Google Scholar 

  2. Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47:819–846

    Article  CAS  PubMed  Google Scholar 

  3. Sebestyén Z, Nagy P, Horvath G et al (2002) Long wavelength fluorophores and cell-by-cell correction for autofluorescence significantly improves the accuracy of flow cytometric energy transfer measurements on a dual-laser benchtop flow cytometer. Cytometry 48:124–135

    Article  PubMed  Google Scholar 

  4. Jovin TM, Arndt-Jovin DJ (1989) Luminescence digital imaging microscopy. Annu Rev Biophys Biophys Chem 18:271–308

    Article  CAS  PubMed  Google Scholar 

  5. Szentesi G, Vereb G, Horvath G et al (2005) Computer program for analyzing donor photobleaching FRET image series. Cytometry A 67:119–128

    Article  PubMed  Google Scholar 

  6. Müller BK, Zaychikov E, Bräuchle C, Lamb DC (2005) Pulsed interleaved excitation. Biophys J 89:3508–3522

    Article  PubMed Central  PubMed  Google Scholar 

  7. Rüttinger S, Macdonald R, Krämer B et al (2006) Accurate single-pair Förster resonant energy transfer through combination of pulsed interleaved excitation, time correlated single-photon counting, and fluorescence correlation spectroscopy. J Biomed Opt 11:024012–024012–9

    Article  PubMed  Google Scholar 

  8. Hendrix J, Lamb DC (2013) Pulsed interleaved excitation: principles and applications. Methods Enzymol 518:205–243

    Article  CAS  PubMed  Google Scholar 

  9. Gratton E, Limkeman M, Lakowicz JR et al (1984) Resolution of mixtures of fluorophores using variable-frequency phase and modulation data. Biophys J 46:479–486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Suhling K, Siegel J, Phillips D et al (2002) Imaging the environment of green fluorescent protein. Biophys J 83:3589–3595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Horvath G, Petrás M, Szentesi G et al (2005) Selecting the right fluorophores and flow cytometer for fluorescence resonance energy transfer measurements. Cytometry A 65:148–157

    Article  PubMed  Google Scholar 

  12. Szentesi G, Horvath G, Bori I et al (2004) Computer program for determining fluorescence resonance energy transfer efficiency from flow cytometric data on a cell-by-cell basis. Comput Methods Programs Biomed 75:201–211

    Article  PubMed  Google Scholar 

  13. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  14. Roszik J, Lisboa D, Szöllosi J, Vereb G (2009) Evaluation of intensity-based ratiometric FRET in image cytometry--approaches and a software solution. Cytometry A 75:761–767

    Article  PubMed  Google Scholar 

  15. Latz E, Visintin A, Lien E et al (2003) The LPS receptor generates inflammatory signals from the cell surface. J Endotoxin Res 9:375–380

    Article  CAS  PubMed  Google Scholar 

  16. Espevik T, Latz E, Lien E et al (2003) Cell distributions and functions of Toll-like receptor 4 studied by fluorescent gene constructs. Scand J Infect Dis 35:660–664

    Article  CAS  PubMed  Google Scholar 

  17. Fitzgerald KA, Rowe DC, Barnes BJ et al (2003) LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J Exp Med 198:1043–1055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Flo TH, Ryan L, Latz E et al (2002) Involvement of toll-like receptor (TLR) 2 and TLR4 in cell activation by mannuronic acid polymers. J Biol Chem 277:35489–35495

    Article  CAS  PubMed  Google Scholar 

  19. Parroche P, Lauw FN, Goutagny N et al (2007) Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci U S A 104:1919–1924

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Rowe DC, McGettrick AF, Latz E et al (2006) The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proc Natl Acad Sci U S A 103:6299–6304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Fitzgerald KA, McWhirter SM, Faia KL et al (2003) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4:491–496

    Article  CAS  PubMed  Google Scholar 

  22. Husebye H, Halaas O, Stenmark H et al (2006) Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity. EMBO J 25:683–692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Latz E, Franko J, Golenbock DT, Schreiber JR (2004) Haemophilus influenzae type b-outer membrane protein complex glycoconjugate vaccine induces cytokine production by engaging human toll-like receptor 2 (TLR2) and requires the presence of TLR2 for optimal immunogenicity. J Immunol 172:2431–2438

    Article  CAS  PubMed  Google Scholar 

  24. Latz E, Verma A, Visintin A et al (2007) Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nat Immunol 8:772–779

    Article  CAS  PubMed  Google Scholar 

  25. Latz E, Visintin A, Espevik T, Golenbock DT (2004) Mechanisms of TLR9 activation. J Endotoxin Res 10:406–412

    Article  CAS  PubMed  Google Scholar 

  26. van der Kleij D, Latz E, Brouwers JFHM et al (2002) A novel host-parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine activates toll-like receptor 2 and affects immune polarization. J Biol Chem 277:48122–48129

    Article  PubMed  Google Scholar 

  27. Visintin A, Halmen KA, Latz E et al (2005) Pharmacological inhibition of endotoxin responses is achieved by targeting the TLR4 coreceptor, MD-2. J Immunol 175:6465–6472

    Article  CAS  PubMed  Google Scholar 

  28. van der Meer BW (2002) Kappa-squared: from nuisance to new sense. J Biotechnol 82:181–196

    PubMed  Google Scholar 

  29. Fábián A, Horvath G, Vámosi G et al (2013) TripleFRET measurements in flow cytometry. Cytometry A. doi:10.1002/cyto.a.22267

    Google Scholar 

  30. Szabó A, Horvath G, Szöllosi J, Nagy P (2008) Quantitative characterization of the large-scale association of ErbB1 and ErbB2 by flow cytometric homo-FRET measurements. Biophys J 95:2086–2096

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eicke Latz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Horvath, G.L., Langhoff, P., Latz, E. (2016). Toll-Like Receptor Interactions Measured by Microscopic and Flow Cytometric FRET. In: McCoy, C. (eds) Toll-Like Receptors. Methods in Molecular Biology, vol 1390. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3335-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3335-8_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3333-4

  • Online ISBN: 978-1-4939-3335-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics