Skip to main content

Ultrafast Microfluidic Cellular Imaging by Optical Time-Stretch

  • Protocol
  • First Online:
Imaging Flow Cytometry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1389))

Abstract

There is an unmet need in biomedicine for measuring a multitude of parameters of individual cells (i.e., high content) in a large population efficiently (i.e., high throughput). This is particularly driven by the emerging interest in bringing Big-Data analysis into this arena, encompassing pathology, drug discovery, rare cancer cell detection, emulsion microdroplet assays, to name a few. This momentum is particularly evident in recent advancements in flow cytometry. They include scaling of the number of measurable colors from the labeled cells and incorporation of imaging capability to access the morphological information of the cells. However, an unspoken predicament appears in the current technologies: higher content comes at the expense of lower throughput, and vice versa. For example, accessing additional spatial information of individual cells, imaging flow cytometers only achieve an imaging throughput ~1000 cells/s, orders of magnitude slower than the non-imaging flow cytometers. In this chapter, we introduce an entirely new imaging platform, namely optical time-stretch microscopy, for ultrahigh speed and high contrast label-free single-cell (in a ultrafast microfluidic flow up to 10 m/s) imaging and analysis with an ultra-fast imaging line-scan rate as high as tens of MHz. Based on this technique, not only morphological information of the individual cells can be obtained in an ultrafast manner, quantitative evaluation of cellular information (e.g., cell volume, mass, refractive index, stiffness, membrane tension) at nanometer scale based on the optical phase is also possible. The technology can also be integrated with conventional fluorescence measurements widely adopted in the non-imaging flow cytometers. Therefore, these two combinatorial and complementary measurement capabilities in long run is an attractive platform for addressing the pressing need for expanding the “parameter space” in high-throughput single-cell analysis. This chapter provides the general guidelines of constructing the optical system for time stretch imaging, fabrication and design of the microfluidic chip for ultrafast fluidic flow, as well as the image acquisition and processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. May M (2014) Big biological impacts from big data. Science 344:1298–1300. doi:10.1126/science.344.6189.1298

    Article  Google Scholar 

  2. Marx V (2013) Biology: The big challenges of big data. Nature 498:255–260. doi:10.1038/498255a

    Article  CAS  PubMed  Google Scholar 

  3. Perfetto SP, Chattopadhyay PK, Roederer M (2004) Seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol 4:648–655

    Article  CAS  PubMed  Google Scholar 

  4. Basiji DA, Ortyn WE, Liang L, Venkatachalam V, Morrissey P (2007) Cellular Image Analysis and Imaging by Flow Cytometry. Clin Lab Med 27:653–670

    Article  PubMed  PubMed Central  Google Scholar 

  5. Baker M (2011) Faster frames, clearer pictures. Nat Methods 8:1005–1009. doi:10.1038/nmeth.1777

    Article  CAS  Google Scholar 

  6. Goda K, Tsia KK, Jalali B (2009) Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature 458:1145–1149. doi:10.1038/nature07980

    Article  CAS  PubMed  Google Scholar 

  7. Goda K, Ayazi A, Gossett DR, Sadasivam J, Lonappan CK, Sollier E, Fard AM, Hur SC, Adam J, Murray C, Wang C, Brackbill N, Carlo DD, Jalali B (2012) High-throughput single-microparticle imaging flow analyzer. Proc Natl Acad Sci U S A 109:11630–11635. doi:10.1073/pnas.1204718109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wong TT, Lau AK, Ho KK, Tang MT, Robles JD, Wei X, Chan AC, Tang AH, Lam EY, Wong KK, Chan GC, Shum HC, Tsia KK (2014) Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow. Sci Rep 4:3656. doi:10.1038/srep03656

    PubMed  PubMed Central  Google Scholar 

  9. Goda K, Jalali B (2013) Dispersive Fourier transformation for fast continuous single-shot measurements. Nat Photon 7:102–112. doi:10.1038/nphoton.2012.359

    Article  CAS  Google Scholar 

  10. Wong TT, Lau AK, Wong KK, Tsia KK (2012) Optical time-stretch confocal microscopy at 1 μm. Opt Lett 37:3330–3332. doi:10.1364/OL.37.003330

    Article  PubMed  Google Scholar 

  11. Tearney GJ, Webb RH, Bouma BE (1998) Spectrally encoded confocal microscopy. Opt Lett 23:1152–1154

    Article  CAS  PubMed  Google Scholar 

  12. Kang D, Yelin D, Bouma BE, Tearney GJ (2009) Spectrally-encoded color imaging. Opt Express 17:15239–15247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lau AK, Wong TT, Ho KK, Tang MT, Chan AC, Lam EY, Shum HC, Wong KK, Tsia KK (2014) Interferometric time-stretch microscopy for ultrafast quantitative cellular and tissue imaging at 1 μm. J Biomed Opt 19(7):076001. doi:10.1117/1.JBO.19.7.076001

    Article  Google Scholar 

  14. Popescu G (2011) Quantitative Phase Imaging of Cells and Tissues. McGraw Hill, New York

    Google Scholar 

  15. Mahjoubfar A, Chen C, Niazi KR, Rabizadeh S, Jalali B (2013) Label-free high-throughput cell screening in flow. Biomed Opt Express 4:1618–1625. doi:10.1364/BOE.4.001618

    Article  PubMed  PubMed Central  Google Scholar 

  16. Park YK, Diez-Silva M, Fu D, Popescu G, Choi W, Barman I, Suresh S, Feld MS (2010) Static and dynamic light scattering of healthy and malaria-parasite invaded red blood. J Biomed Opt 15:020506. doi:10.1117/1.3369966

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mourant JR, Freyer JP, Hielscher AH, Eick AA, Shen D, Johnson TM (1998) Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Appl Opt 37:3586–3593

    Article  CAS  PubMed  Google Scholar 

  18. Alexandrov SA, Hillman TR, Sampson DD (2005) Spatially resolved Fourier holographic light scattering angular spectroscopy. Opt Lett 30:3305–3307

    Article  PubMed  Google Scholar 

  19. Haldar JP, Wang Z, Popescu G, Zhi-Pei L (2010) Label-free high-resolution imaging of live cells with deconvolved spatial light interference microscopy. Conf Proc IEEE Eng Med Biol Soc 2010:3382–3385. doi:10.1109/IEMBS.2010.5627917

    PubMed  PubMed Central  Google Scholar 

  20. Wang Z, Tangella K, Balla A, Popescu G (2011) Tissue refractive index as marker of disease. J Biomed Opt 16:116017. doi:10.1117/1.3656732

    Article  PubMed  PubMed Central  Google Scholar 

  21. Park Y, Diez-Silva M, Popescu G, Lykotrafitis G, Choi W, Feld MS, Suresh S (2008) Refractive Index Maps and Membrane Dynamics of Human Red Blood Cells Parasitized by Plasmodium falciparum. Proc Natl Acad Sci U S A 105:13730–13735. doi:10.1073/pnas.0806100105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Di Carlo D (2009) Inertial microfluidics. Lab Chip 9:3038–3046. doi:10.1039/b912547g

    Article  PubMed  Google Scholar 

  23. Ikeda T, Popescu G, Dasari RR, Feld MS (2005) Hilbert phase microscopy for investigating fast dynamics in transparent systems. Opt Lett 30:1165–1167

    Article  PubMed  Google Scholar 

  24. Ghiglia DC, Pritt MD (1998) Two-dimensional phase unwrapping: Theory, Algorithms, and Software. Wiley, New York

    Google Scholar 

  25. Tsia KK, Goda K, Capewell D, Jalali B (2010) Performance of serial time-encoded amplified microscope. Opt Express 18:10016–10028. doi:10.1364/OE.18.010016

    Article  PubMed  Google Scholar 

  26. Wei X, Lau AK, Xu Y, Zhang C, Mussot A, Kudlinski A, Tsia KK, Wong KK (2014) Broadband fiber-optical parametric amplification for ultrafast time-stretch imaging at 1.0 μm. Opt Lett 39:5989–5992. doi:10.1364/OL.39.005989

    Article  PubMed  Google Scholar 

  27. Bhaduri B, Edwards C, Pham H, Zhou R, Nguyen TH, Goddard LL, Popescu G (2014) Diffraction phase microscopy: principles and applications in materials and life sciences. Adv Opt Photon 6:57–119. doi:10.1364/AOP.6.000057

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by grant from the Research Grants Council of the Hong Kong SAR, China (Project No. HKU 717510E, HKU 7172/12E, 717911E, 720112E, and 17207714), and University Development Fund of HKU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin K. Tsia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lau, A.K.S., Wong, T.T.W., Shum, H.C., Wong, K.K.Y., Tsia, K.K. (2016). Ultrafast Microfluidic Cellular Imaging by Optical Time-Stretch. In: Barteneva, N., Vorobjev, I. (eds) Imaging Flow Cytometry. Methods in Molecular Biology, vol 1389. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3302-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3302-0_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3300-6

  • Online ISBN: 978-1-4939-3302-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics