Skip to main content

Signal Processing

  • Chapter
  • First Online:
Listening in the Ocean

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

Abstract

We examine some methods commonly used for analyzing marine bioacoustic recordings. Filtering techniques are used to prevent aliasing, to remove certain types of noise, to flatten the spectrum of ocean noise before recording, and so on. Filter design necessarily requires making choices that affect trade-offs among various desirable filter properties. Detection and classification are used for analyzing large data sets. They often start with signal conditioning, which can adjust the spectrum, standardize signal level, and remove some types of noise. They proceed by calculating numerical acoustic features and using them to decide whether a given sound is present (detection) or to choose which of several categories a vocalization belongs to (classification). A variety of methods for detection and classification are briefly described, with the choice depending both on the nature of the sound(s) and the noise as well as on the task to be solved. Detectors operate in the time domain or on a time–frequency representation, with different ones appropriate for different call types. Classifiers are characterized as either generative or discriminative, as parametric or nonparametric, and as supervised or non-supervised. Performance of detection and classification can be evaluated in several ways, including receiver operating characteristic curves and precision/recall statistics. Localization of calling animals is usually performed using time differences of arrival of sounds at several hydrophones; a variety of methods are available, with the best choice depending on the characteristics of the sound and the acoustic environment. The most accurate localization methods use acoustic propagation modeling to estimate travel times. Several software packages are reviewed for filtering, detection, classification, and localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • O. Adam, The use of the Hilbert-Huang transform to analyze transient signals emitted by sperm whales. Appl. Acoust. 67, 1134–1143 (2006a)

    Article  Google Scholar 

  • O. Adam, Advantages of the Hilbert Huang transform for marine mammals signals analysis. J. Acoust. Soc. Am. 120, 2965–2973 (2006b)

    Article  Google Scholar 

  • O. Adam, Segmentation of killer whale vocalizations using the Hilbert-Huang Transform. EURASIP J. Adv. Signal Proc. 10, 2007–2016 (2008)

    Google Scholar 

  • K. Adi, M.T. Johnson, T.S. Osiejuk, Acoustic censusing using automatic vocalization classification and identity recognition. J. Acoust. Soc. Am. 127, 874–883 (2010)

    Article  Google Scholar 

  • R. Altes, Detection, estimation, and classification with spectrograms. J. Acoust. Soc. Am. 67, 1232–1246 (1980)

    Article  Google Scholar 

  • W.W.L. Au, R.A. Kastelein, T. Rippe, N.M. Schooneman, Transmission beam pattern and echolocation signals of a harbor porpoise (Phocoena phocoena). J. Acoust. Soc. Am. 106, 3699–3705 (1999)

    Article  Google Scholar 

  • W.W.L. Au, J.K.B. Ford, J.K. Horne, K.A. Newman Allman, Echolocation signals of free ranging killer whales (Orcinus orca) and modelling of foraging for chinook salmon (Oncorhyncus tswawytscha). J. Acoust. Soc. Am. 115, 901–909 (2004)

    Article  Google Scholar 

  • R. Aubauer, M.O. Lammers, W.W.L. Au, One-hydrophone method for estimating distance and depth of phonating dolphins in shallow water. J. Acoust. Soc. Am. 107, 2744–2749 (2000)

    Article  Google Scholar 

  • J. Barlow, B.L. Taylor, Estimates of sperm whale abundance in the northeastern temperate Pacific from a combined acoustic and visual survey. Mar. Mamm. Sci. 21, 429–445 (2005)

    Article  Google Scholar 

  • P.M. Baggenstoss, An algorithm for the localization of multiple interfering sperm whales using multi-sensor time difference of arrival. J. Acoust. Soc. Am. 130, 102–112 (2011)

    Article  Google Scholar 

  • M.F. Baumgartner, S.M.V. Parijs, F.W. Wenzel, C.J. Tremblay, H.C. Esch, A.M. Warde, Low frequency vocalizations attributed to sei whales (Balaenoptera borealis). J. Acoust. Soc. Am. 124, 1339–1349 (2008)

    Article  Google Scholar 

  • B. Boashash, Estimating and interpreting the instantaneous frequency of a signal. IEEE Fund. Proc. IEEE 80, 520–538 (1992)

    Article  Google Scholar 

  • F. Bénard, H. Glotin, Automatic indexing for content analysis of whale recordings and XML representation. EURASIP J. Adv. Signal Proc. 2010, 695017 (2010). doi:10.1155/2010/695017

    Google Scholar 

  • J.C. Brown, P.J.O. Miller, Automatic classification of killer whale vocalizations using dynamic time warping. J. Acoust. Soc. Am. 122, 1201–1207 (2007)

    Article  Google Scholar 

  • J.C. Brown, P. Smaragdis, Hidden Markov and Gaussian mixture models for automatic call classification. JASA-EL 125, EL222–EL224 (2009)

    Google Scholar 

  • J.R. Buck, P.L. Tyack, A quantitative measure of similarity for Tursiops truncatus signature whistles. J. Acoust. Soc. Am. 94, 2497–2506 (1993)

    Article  Google Scholar 

  • C.J.C. Burges, A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2, 121–167 (1998)

    Article  Google Scholar 

  • G.A. Carpenter, S. Grossberg, D.B. Rosen, ART 2-A – an adaptive resonance algorithm for rapid category learning and recognition. Neural Netw. 4, 493–504 (1991)

    Article  Google Scholar 

  • D.H. Cato, Simple methods of estimating source levels and locations of marine animal sounds. J. Acoust. Soc. Am. 104, 1667–1678 (1998)

    Article  Google Scholar 

  • D.M.F. Chapman, You can’t get there from here: shallow water sound propagation and whale localization. Can. Acoust. 32, 167–171 (2004)

    Google Scholar 

  • C.W. Clark, A real-time direction finding device for determining the bearing to the underwater sounds of southern right whales, Eubalaena australis. J. Acoust. Soc. Am. 68, 508–511 (1980)

    Article  Google Scholar 

  • C.W. Clark, The use of bowhead call-tracks based on call characteristics as an independent means of determining tracking parameters. Sci. Rep. Intl. Whal. Commn. 39, 111–113 (1989)

    Google Scholar 

  • C.W. Clark, W.T. Ellison, K. Beeman, Acoustic tracking of migrating bowhead whales. Proc. IEEE Oceans 86, 341–346 (1986)

    Google Scholar 

  • C.W. Clark, W.T. Ellison, Calibration and comparison of acoustic location methods used during the spring migration of the bowhead whale, Balaena mysticetus, off Pt. Barrow, Alaska, 1984–1993. J. Acoust. Soc. Am. 107, 3509–3517 (2000)

    Article  Google Scholar 

  • P.J. Clemins, M.T. Johnson, K.M. Leong, A. Savage, Automatic classification and speaker identification of African elephant (Loxodonta africana) vocalizations. J. Acoust. Soc. Am. 117, 956–963 (2005)

    Article  Google Scholar 

  • N. Cristianini, J. Shawe-Taylor, Support vector machines and other kernel-based learning methods (Cambridge Univ. Press, Cambridge, 2000)

    Book  Google Scholar 

  • S. Datta, C. Sturtivant, Dolphin whistle classification for determining group identities. Signal Proc 82, 127–327 (2002)

    Article  Google Scholar 

  • V.B. Deecke, J.K.B. Ford, P. Spong, Quantifying complex patterns of bioacoustic variation: use of a neural network to compare killer whale (Orcinus orca) dialects. J. Acoust. Soc. Am. 105, 2499–2507 (1999)

    Article  Google Scholar 

  • V.B. Deecke, V.M. Janik, Automated categorization of bioacoustic signals: avoiding perceptual pitfalls. J. Acoust. Soc. Am. 199, 645–653 (2006)

    Article  Google Scholar 

  • J.S. Downie, The music information retrieval evaluation exchange (2005–2007): a window into music information retrieval research. Acoust. Sci. Technol. 29, 247–255 (2008)

    Article  Google Scholar 

  • R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification (Wiley, New York, 2001)

    Google Scholar 

  • C. Erbe, A.R. King, Automatic detection of marine mammals using information entropy. J. Acoust. Soc. Am. 124, 2833–2840 (2008)

    Article  Google Scholar 

  • H. Figueroa, M. Robbins, XBAT: an open-source extensible platform for bioacoustic research and monitoring, in International Academy for Nature Conservation, ed. by K.-H. Frommolt, R. Bardeli, M. Calusen (BfN Skripten, Isle of Vilm, 2007), pp. 143–155

    Google Scholar 

  • S.D. Frank, N. Ferris, Analysis and localization of blue whale vocalizations in the Solomon Sea using waveform amplitude data. J. Acoust. Soc. Am. 130, 731–736 (2011)

    Article  Google Scholar 

  • A.S. Frankel, C.W. Clark, L.M. Herman, C.M. Gabriele, Spatial distribution, habitat utilization, and social interactions of humpback whales, Megaptera novaeangliae, off Hawaii, determined using acoustic and visual techniques. Can. J. Zool. 73, 1134–1146 (1995)

    Article  Google Scholar 

  • Y. Freund, R.E. Schapire, A short introduction to boosting (Japanese, English version available at http://cseweb.ucsd.edu/~yfreund). J. Jpn Soc. Artif. Int. 14, 771–780 (1999)

    Google Scholar 

  • K.M. Fristrup, Characterizing Acoustic Features of Marine Animal Sounds. Technical Report WHOI-92-04 (Woods Hole Oceanographic Inst., Woods Hole, MA, 1992)

    Book  Google Scholar 

  • C. Gervaise, A. Barazzutti, S. Busson, Y. Simard, N. Roy, Automatic detection of bioacoustics impulses based on kurtosis under weak signal to noise ratio. Appl. Acoust. 71, 1020–1026 (2010). doi:10.1016/j.apacoust.2010.05.009

    Article  Google Scholar 

  • D. Gillespie, An acoustic survey for sperm whales in the Southern Ocean Sanctuary conducted from the RSV Aurora Australis. Rep. Intl. Whal. Commn. 47, 897–907 (1997)

    Google Scholar 

  • D. Gillespie, Detection and classification of right whale calls using an edge detector operating on a smoothed spectrogram. Can. Acoust. 32, 39–47 (2004)

    Google Scholar 

  • D. Gillespie, R. Leaper, Detection of sperm whale (Physeter macrocephalus) clicks and discrimination of individual vocalisations. Eur. Res. Cetaceans 10, 87–91 (1996)

    Google Scholar 

  • D. Gillespie, J. Gordon, R. McHugh, D. McLaren, D.K. Mellinger, P. Redmond, A. Thode, P. Trinder, X.-Y. Deng, PAMGUARD: semiautomated, open source software for real-time acoustic detection and localisation of cetaceans. Proc. Inst. Acoust. 30, 9 (2008)

    Google Scholar 

  • D. Gillespie, M. Caillat, J. Gordon, P. White, Automatic detection and classification of odontocete whistlesa). J. Acoust. Soc. Am. 134, 2427–2437 (2013)

    Article  Google Scholar 

  • C.R. Greene, M.W. McLennan, R.G. Norman, T.L. McDonald, R.S. Jakubczak, W.J. Richardson, Directional frequency and recording (DIFAR) sensors in seafloor recorders to locate calling bowhead whales during their fall migration. J. Acoust. Soc. Am. 116, 799–813 (2004)

    Article  Google Scholar 

  • S. Grossberg, Neural Networks and Natural Intelligence (MIT Press, Cambridge, 1988)

    Google Scholar 

  • B.M. Gur, C. Niezrecki, Autocorrelation based denoising of manatee vocalizations using the undecimated discrete wavelet transform. J. Acoust. Soc. Am. 122, 188–199 (2007)

    Article  Google Scholar 

  • M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The WEKA data mining software: an update. SIGKDD Explorations 11, 10–18 (2009)

    Article  Google Scholar 

  • G.D. Hastie, T.R. Barton, K. Grellier, P.S. Hammond, R.J. Swift, P.M. Thompson, B. Wilson, Distribution of small cetaceans within a candidate Special Area of Conservation; implications for management. J. Cetacean Res. Manag. 5, 261–266 (2003)

    Google Scholar 

  • T. Hastie, R. Tibshirani, J.H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 1st edn. (Springer, New York, NY, 2001)

    Book  Google Scholar 

  • T. Hastie, R. Tibshirani, J.H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. (Springer, New York, NY, 2009)

    Book  Google Scholar 

  • E.E. Henderson, J.A. Hildebrand, M.H. Smith, Classification of behavior using vocalizations of Pacific white-sided dolphins (Lagenorhynchus obliquidens). J. Acoust. Soc. Am. 130, 557–567 (2011)

    Article  Google Scholar 

  • C.W. Helstrom, Statistical Theory of Signal Detection (Pergamon, New York, NY, 1975)

    Google Scholar 

  • D.S. Houser, D.A. Helweg, P.W. Moore, Classification of dolphin echolocation clicks by energy and frequency distributions. J. Acoust. Soc. Am. 106, 1579–1585 (1999)

    Article  Google Scholar 

  • X. Huang, A. Acero, H.W. Hon, Spoken Language Processing (Prentice Hall, Upper Saddle River, NJ, 2001)

    Google Scholar 

  • C. Ioana, C. Gervaise, Y. Stéphan, J.I. Mars, Analysis of underwater mammal vocalizations using time-frequency-phase tracker. Appl. Acoust. 71, 1070–1080 (2010)

    Article  Google Scholar 

  • V.M. Janik, S.M. Van Parijs, P.M. Thompson, A two-dimensional acoustic localization system for marine mammals. Mar. Mamm. Sci. 16, 437–447 (2000)

    Article  Google Scholar 

  • S.M. Jarvis, N.A. DiMarzio, R.P. Morrissey, D.J. Moretti, A novel multi-class support vector machine classifier for automated classification of beaked whales and other small odontocetes. Can. Acoust. 36, 34–40 (2008)

    Google Scholar 

  • A.T. Johansson, P.R. White, An adaptive filter-based method for robust, automatic detection and frequency estimation of whistles. J. Acoust. Soc. Am. 130, 893–903 (2011)

    Article  Google Scholar 

  • D.H. Johnson, D.E. Dudgeon, Array Signal Processing: Concepts and Techniques (Prentice Hall, Englewood Cliffs, NJ, 1993)

    Google Scholar 

  • J.F. Kaiser, On a simple algorithm to calculate the “Energy” of a signal. Proc. IEEE Intl. Conf. Acoust., Speech, Sig. Process., Albuquerque, 381–384 (1990)

    Google Scholar 

  • V. Kandia, Y. Stylianou, Detection of sperm whale clicks based on the Teager-Kaiser energy operator. Appl. Acoust. 67, 1144–1163 (2006)

    Article  Google Scholar 

  • V. Kandia, Y. Stylianou, Detection of clicks based on group delay. Can. Acoust. 36, 48–54 (2008)

    Google Scholar 

  • J.A. Kéç-Kogan, D. Margoliash, Automated recognition of bird song elements from continuous recordings using dynamic time warping and hidden Markov models: a comparative study. J. Acoust. Soc. Am. 103, 2185–2196 (1998)

    Article  Google Scholar 

  • A. Kirshenbaum, M.A. Roch, An image processing based paradigm for the extraction of tonal sounds in cetacean communications. J. Acoust. Soc. Am. 134, 4435 (2013)

    Article  Google Scholar 

  • H. Klinck, L. Kindermann, O. Boebel, Detection of leopard seal (Hydrurga leptonyx) vocalizations using the envelope-spectrogram technique (tEST) in combination with a hidden Markov model. Can. Acoust. 36, 118–124 (2008)

    Google Scholar 

  • H. Klinck, D.K. Mellinger, The energy ratio mapping algorithm (ERMA): a tool to improve the energy-based detection of odontocete clicks. J. Acoust. Soc. Am. 129, 1807–1812 (2011)

    Article  Google Scholar 

  • P. Kovesi, Phase-preserving denoising of images, in Proc. Australian Patt. Rec. Soc. Conf: DICTA’99, Perth, WA, Australia, 1999, p. 212–217

    Google Scholar 

  • R. Leaper, O. Chappell, J. Gordon, The development of practical techniques for surveying sperm whale populations acoustically. Rep. Intl. Whal. Commn. 42, 549–560 (1992)

    Google Scholar 

  • R.P. Lippmann, Pattern classification using neural networks. IEEE Commun. Mag. 27, 47–64 (1989)

    Article  Google Scholar 

  • S.K. Madhusudhana, M.A. Roch, E.M. Oleson, M.S. Soldevilla, J.A. Hildebrand, Blue whale B and D call classification using a frequency domain based robust contour extractor. Proc. OCEANS '09, Bremen, Germany, 2009, p 1–7

    Google Scholar 

  • A. Mallawaarachchi, S.H. Ong, M. Chitre, E. Taylor, Spectrogram denoising and automated extraction of the fundamental frequency variation of dolphin whistles. J. Acoust. Soc. Am. 124, 1159–1170 (2008)

    Article  Google Scholar 

  • C.D. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval (Cambridge University Press, New York, NY, 2008)

    Book  Google Scholar 

  • A. Martin, G. Doddington, T. Kamm, M. Ordowski, M. Przybocki, The DET curve in assessment of detection task performance, in Proc. Eurospeech 4, Rhodes, Greece, 1997, p. 1895-1898.

    Google Scholar 

  • D. Mathias, A. Thode, S.B. Blackwell, Computer-aided classification of bowhead whale call categories for mitigation monitoring. Proc IEEE Passive, Hyères, France (IEEE, Hyeres, 2008), p. 6

    Google Scholar 

  • M.A. McDonald, DIFAR hydrophone usage in whale research. Can. Acoust. 32, 155–160 (2004)

    Google Scholar 

  • M.A. McDonald, S.E. Moore, Calls recorded from North Pacific right whales (Eubalaena japonica) in the eastern Bering Sea. J. Cetacean Res. Manag. 4, 261–266 (2002)

    Google Scholar 

  • M.A. McDonald, J.A. Hildebrand, M. Sarah, Worldwide decline in tonal frequencies of blue whale songs. Endanger Species Res. 9, 13–21 (2009)

    Article  Google Scholar 

  • D.K. Mellinger, Ishmael 1.0 User’s Guide (NOAA, Seattle, WA, 2001). Tech. Report OAR-PMEL-120

    Google Scholar 

  • D.K. Mellinger, C.W. Clark, Methods for automatic detection of mysticete sounds. Mar. Freshwater Behav. Physiol. 29, 163–181 (1997)

    Article  Google Scholar 

  • D.K. Mellinger, C.W. Clark, Recognizing transient low-frequency whale sounds by spectrogram correlation. J. Acoust. Soc. Am. 107, 3518–3529 (2000)

    Article  Google Scholar 

  • D.K. Mellinger, B.A. Weisburn, S.G. Mitchell, C.W. Clark, Measuring regular whale call intervals with the summed autocorrelation. J. Acoust. Soc. Am. 95, 2881 (1994)

    Article  Google Scholar 

  • D.K. Mellinger, K.M. Stafford, C.G. Fox, Seasonal occurrence of sperm whale (Physeter macrocephalus) sounds in the Gulf of Alaska, 1999–2001. Mar. Mamm. Sci. 20, 48–62 (2004)

    Article  Google Scholar 

  • D.K. Mellinger, R.P. Morrissey, S.W. Martin, L. Thomas, T.A. Marques, J. Yosco, A method for detecting whistles, moans, and other frequency contours. J. Acoust. Soc. Am. 129, 4055–4061 (2011)

    Article  Google Scholar 

  • J. Miksis-Olds, J.R. Buck, M.J. Noad, D.H. Cato, M.D. Stokes, Information theory analysis of Australian humpback whale song. J. Acoust. Soc. Am. 124, 2385–2393 (2008)

    Article  Google Scholar 

  • P.J. Miller, P.L. Tyack, A small towed beamforming array to identify vocalizing resident killer whales (Orcinus orca) concurrent with focal behavioral observations. Deep-Sea Res. 45, 1389–1405 (1998)

    Google Scholar 

  • T. Mitchell, Machine Learning (McGraw-Hill, Boston, MA, 1997)

    Google Scholar 

  • T.K. Moon, The expectation-maximization algorithm. IEEE Signal Proc. Mag. 13, 47–60 (1996)

    Article  Google Scholar 

  • R.P. Morrissey, J. Ward, N. DiMarzio, S. Jarvis, D.J. Moretti, Passive acoustic detection and localization of sperm whales (Physeter macrocephalus) in the Tongue of the Ocean. Appl. Acoust. 67, 1091–1105 (2006)

    Article  Google Scholar 

  • L.M. Munger, D.K. Mellinger, S.M. Wiggins, S.E. Moore, J.A. Hildebrand, Performance of spectrogram correlation in detecting right whale calls in long-term recordings from the Bering Sea. Can. Acoust. 33, 25–34 (2005)

    Google Scholar 

  • A.E. Newhall, Y.-T. Ying, J.F. Lynch, M.F. Baumgartner, G.G. Gawarkiewicz, Long distance passive localization of vocalizing sei whales using an acoustic normal mode approach. J. Acoust. Soc. Am. 131, 1814–1825 (2012)

    Article  Google Scholar 

  • NIST. U.S. Natl. Inst. Standards Tech., 2010. http://www.itl.nist.gov/iad/mig/tools/. Accessed 4 Mar 2010

  • M.J. Noad, D.H. Cato, Swimming speeds of singing and non-singing humpback whales during migration. Mar. Mamm. Sci. 23, 481–495 (2007)

    Article  Google Scholar 

  • E.-M. Nosal, L.N. Frazer, Delays between direct and reflected arrivals used to track a single sperm whale. Appl. Acoust. 87, 1187–1201 (2006)

    Article  Google Scholar 

  • E.-M. Nosal, Methods for tracking multiple marine mammals with wide-baseline passive acoustic arrays. J. Acoust. Soc. Am. 134, 2383–2392 (2013)

    Article  Google Scholar 

  • E.M. Oleson, S.M. Wiggins, J.A. Hildebrand, Temporal separation of blue whale call types on a southern California feeding ground. Anim. Behav. 74, 881–894 (2007)

    Article  Google Scholar 

  • A.V. Oppenheim, R.W. Schafer, Discrete-Time Signal Processing, 3rd edn. (Prentice-Hall, Englewood Cliffs, NJ, 2009)

    Google Scholar 

  • J.N. Oswald, S. Rankin, J. Barlow, M.O. Lammers, A tool for real-time acoustic species identification of delphinid whistles. J. Acoust. Soc. Am. 122, 587–595 (2007)

    Article  Google Scholar 

  • J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A.E. Lefohn, T.J. Purcell, A survey of general-purpose computation on graphics hardware. Comput. Graph. Forum 26, 80–113 (2007)

    Article  Google Scholar 

  • J.R. Potter, D.K. Mellinger, C.W. Clark, Marine mammal call discrimination using artificial neural networks. J. Acoust. Soc. Am. 96, 1255–1262 (1994)

    Article  Google Scholar 

  • S. Qian, D. Chen, Joint time-frequency analysis. IEEE Signal Proc. Mag. 16(2), 52–67 (1999)

    Article  Google Scholar 

  • R Development Core Team, R: A Language and Environment for Statistical Computing (World Wide Web electronic publication, 2009). http://www.r-project.org/. Accessed 28 Jan 2010

  • L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77, 257–286 (1989)

    Article  Google Scholar 

  • L.R. Rabiner, B.-H. Juang, Fundamentals of Speech Recognition (Prentice Hall, Englewood Cliffs, NJ, 1993)

    Google Scholar 

  • M.H. Rasmussen, L.A. Miller, W.W.L. Au, Source levels of clicks from free-ranging white beaked dolphins (Lagenorhynchus albirostris Gray 1846) recorded in Icelandic waters. J. Acoust. Soc. Am. 111, 1122–1125 (2002)

    Article  Google Scholar 

  • B.P. Rideout, S.E. Dosso, D.E. Hannay, Underwater passive acoustic localization of Pacific walruses in the northeastern Chukchi Sea. J. Acoust. Soc. Am. 134, 2534–2545 (2013)

    Article  Google Scholar 

  • D. Risch, C.W. Clark, P.J. Dugan, M. Popescu, U. Siebert, S.M. Van Parijs, Minke whale acoustic behavior and multi-year seasonal and diel vocalization patterns in Massachusetts Bay, USA. Mar. Ecol. Prog. Ser. 489, 279–295 (2013)

    Article  Google Scholar 

  • M.A. Roch, M.S. Soldevilla, J.C. Burtenshaw, E.E. Henderson, J.A. Hildebrand, Gaussian mixture model classification of odontocetes in the Southern California Bight and the Gulf of California. J. Acoust. Soc. Am. 121, 1737–1748 (2007)

    Article  Google Scholar 

  • M.A. Roch, M.S. Soldevilla, R. Hoenigman, S.M. Wiggins, J.A. Hildebrand, Comparison of machine learning techniques for the classification of echolocation clicks from three species of odontocetes. Can. Acoust. 36, 41–47 (2008)

    Google Scholar 

  • M.A. Roch, H. Klinck, S. Baumann-Pickering, D.K. Mellinger, S. Qui, M.S. Soldevilla, J.A. Hildebrand, Classification of echolocation clicks from odontocetes in the Southern California Bight. J. Acoust. Soc. Am. 129, 467–475 (2011a)

    Article  Google Scholar 

  • M.A. Roch, T.S. Brandes, B. Patel, Y. Barkley, S. Baumann-Pickering, M.S. Soldevilla, Automated extraction of odontocete whistle contours. J. Acoust. Soc. Am. 130, 2212–2223 (2011b)

    Article  Google Scholar 

  • L.S. Sayigh, P.L. Tyack, R.S. Wells, Recording underwater sounds of free-ranging dolphins while underway in a small boat. Mar. Mamm. Sci. 9, 209–213 (1993)

    Article  Google Scholar 

  • R.O. Schmidt, A new approach to geometry of range difference location. IEEE Trans. Aerosp. Electron. Syst. 8, 821–835 (1972)

    Article  Google Scholar 

  • G. Sharma, J. Martin, MATLAB: a language for parallel computing. Int. J. Parallel Prog. 37, 3–36 (2009)

    Article  Google Scholar 

  • A.D. Shapiro, P.L. Tyack, S. Seneff, Comparing call-based versus subunit-based methods for categorizing Norwegian killer whale, Orcinus orca, vocalizations. Anim. Behav. 81, 377–386 (2011)

    Article  Google Scholar 

  • A. Širović, J.A. Hildebrand, S.M. Wiggins, Blue and fin whale call source levels and propagation range in the Southern Ocean. J. Acoust. Soc. Am. 122, 1208–1215 (2007)

    Article  Google Scholar 

  • M.D. Skowronski, J.G. Harris, Acoustic detection and classification of microchiroptera using machine learning: lessons learned from automatic speech recognition. J. Acoust. Soc. Am. 119, 1817–1833 (2006)

    Article  Google Scholar 

  • M.S. Soldevilla, E.E. Henderson, G.S. Campbell, S.M. Wiggins, J.A. Hildebrand, M.A. Roch, Classification of Risso’s and Pacific white-sided dolphins using spectral properties of echolocation clicks. J. Acoust. Soc. Am. 124, 609–624 (2008)

    Article  Google Scholar 

  • J.L. Spiesberger, K.M. Fristrup, Passive localization of calling animals and sensing of their acoustic environment using acoustic tomography. Am. Nat. 135, 107–153 (1990)

    Article  Google Scholar 

  • J.L. Spiesberger, Finding the right cross-correlation peak for locating sounds in multipath environments with a fourth-moment function. J. Acoust. Soc. Am. 108, 1349–1352 (2000)

    Article  Google Scholar 

  • J.L. Spiesberger, Hyperbolic location errors due to insufficient numbers of receivers. J. Acoust. Soc. Am. 109, 3076–3079 (2001)

    Article  Google Scholar 

  • J.L. Spiesberger, M. Wahlberg, Probability density functions for hyperbolic and isodiachronic locations. J. Acoust. Soc. Am. 112, 3046–3052 (2002)

    Article  Google Scholar 

  • K.M. Stafford, C.G. Fox, D.S. Clark, Long-range acoustic detection and localization of blue whale calls in the northeast Pacific Ocean. J. Acoust. Soc. Am. 104, 3616–3625 (1998)

    Article  Google Scholar 

  • R. Suzuki, J.R. Buck, P.L. Tyack, Information entropy of humpback whale songs. J. Acoust. Soc. Am. 119, 1849–1866 (2006)

    Article  Google Scholar 

  • J.A. Swets, Signal Detection and Recognition by Human Observers: Contemporary Readings (Wiley, New York, NY, 1964)

    Google Scholar 

  • A. Tarantola, Inverse Problem Theory (Elsevier, Amsterdam, 1987)

    Google Scholar 

  • J.R. Taylor, An Introduction to Error Analysis (Chapter 3), 2nd edn. (University Science Press, Sausalito, CA, 1997)

    Google Scholar 

  • G.K. Thiruvathukal, Cluster computing. Comput. Sci. Eng. 7, 11–13 (2005)

    Article  Google Scholar 

  • A. Thode, G.L. D'Spain, W.A. Kuperman, Matched-field processing, geoacoustic inversions, and source signature recovery of blue whale vocalizations. J. Acoust. Soc. Am. 107, 1286–1300 (2000)

    Article  Google Scholar 

  • A.M. Thode, D.K. Mellinger, S. Stienessen, A. Martinez, K. Mullin, Depth-dependent acoustic features of diving sperm whales (Physeter macrocephalus) in the Gulf of Mexico. J. Acoust. Soc. Am. 112, 308–321 (2002)

    Article  Google Scholar 

  • A. Thode, Three-dimensional passive acoustic tracking of sperm whales (Physeter macrocephalus) in ray-refracting environments. J. Acoust. Soc. Am. 18, 3575–3584 (2005)

    Article  Google Scholar 

  • A. Thode, J. Skinner, P. Scott, J. Roswell, J. Straley, K. Folkert, Tracking sperm whales with a towed acoustic vector sensor. J. Acoust. Soc. Am. 128, 2681–2694 (2010)

    Article  Google Scholar 

  • C.O. Tiemann, M.B. Porter, L.N. Frazer, Localization of marine mammals near Hawaii using an acoustic propagation model. J. Acoust. Soc. Am. 115, 2834–2843 (2004)

    Article  Google Scholar 

  • C.O. Tiemann, S.W. Martin, J.R. Mobley, Aerial and acoustic marine mammal detection and localization on Navy ranges. IEEE J. Ocean Eng. 31, 107–119 (2006)

    Article  Google Scholar 

  • C.O. Tiemann, A.M. Thode, J. Straley, V. O'Connell, K. Folkert, Three-dimensional localization of sperm whales using a single hydrophone. J. Acoust. Soc. Am. 120, 2355–2365 (2007)

    Article  Google Scholar 

  • A. Tolstoy, Matched Field Processing (World Scientific, Singapore, 1993)

    Google Scholar 

  • W.A. Tyrrell, Design of acoustic systems, in Marine Bioacoustics, ed. by W.N. Tavolga (Pergamon, Oxford, 1964), pp. 65–86

    Google Scholar 

  • I.R. Urazghildiiev, C.W. Clark, Acoustic detection of North Atlantic right whale contact calls using the generalized likelihood ratio test. J. Acoust. Soc. Am. 120, 1956–1963 (2006)

    Article  Google Scholar 

  • I.R. Urazghildiiev, C.W. Clark, T.P. Krein, S.E. Parks, Detection and recognition of North Atlantic right whale contact calls in the presence of ambient noise. IEEE J. Ocean Eng. 34, 358–368 (2009)

    Article  Google Scholar 

  • M. Wahlberg, B. Møhl, P.T. Madsen, Estimating source position accuracy of a large-aperture hydrophone array for bioacoustics. J. Acoust. Soc. Am. 109, 397–406 (2001)

    Article  Google Scholar 

  • W.A. Watkins, W.E. Schevill, Four-hydrophone array for acoustic three-dimensional localization. Woods Hole Oceanogr. Inst., Tech. Report WHOI-71-60, 1971

    Google Scholar 

  • W.A. Watkins, W.E. Schevill, Sound source location by arrival-times on a non-rigid three dimensional hydrophone array. Deep-Sea Res. 19, 691–706 (1972)

    Google Scholar 

  • W.A. Watkins, M.A. Daher, G.M. Reppucci, J.E. George, D.L. Martin, N.A. DiMarzio, D.P. Gannon, Seasonality and distribution of whale calls in the North Pacific. Oceanography 13(1), 62–67 (2000)

    Article  Google Scholar 

  • P.R. White, M.L. Hadley, Introduction to particle filters for tracking applications in the passive acoustic monitoring of cetaceans. Can. Acoust. 36, 146–152 (2008)

    Google Scholar 

  • H. Whitehead, J. Gordon, Methods of obtaining data for assessing and modelling sperm whale populations which do not depend on catches. Rep. Intl. Whal. Commn. 8(Special Issue), 149–166 (1986)

    Google Scholar 

  • S. Wiggins, M. McDonald, L.M. Munger, S. Moore, J.A. Hildebrand, Waveguide propagation allows range estimates for North Pacific right whales in the Bering Sea. Can. Acoust. 32, 146–154 (2004)

    Google Scholar 

  • S.M. Wiggins, M.A. McDonald, J.A. Hildebrand, Beaked whale and dolphin tracking using a multichannel autonomous acoustic recorder. J. Acoust. Soc. Am. 131, 156–163 (2012)

    Article  Google Scholar 

  • S.J. Young, G. Evermann, M.J.F. Gales, T. Hain, D. Kershaw, G. Moore, J. Odell, D. Ollason, D. Povey, V. Valtchev, P.C. Woodland, The HTK Book, Version 3.4 (University of Surrey, Guildford, 2006)

    Google Scholar 

  • W.M.X. Zimmer, M.P. Johnson, A. D'Amico, P. Tyack, Combining data from a multisensory tag and passive sonar to determine the diving behavior of a sperm whale (Physeter macrocephalus). IEEE J. Ocean Eng. 28, 13–28 (2003)

    Article  Google Scholar 

  • W.M.X. Zimmer, Passive Acoustic Monitoring of Cetaceans (Cambridge University Press, Cambridge, 2011)

    Book  Google Scholar 

  • W.M.X. Zimmer, Range estimation of cetaceans with compact volumetric arrays. J. Acoust. Soc. Am. 134, 2610–2618 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This chapter was produced in part with funding from the Office of Naval Research for the “Advanced Detection, Classification, and Localization” project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. Mellinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mellinger, D.K., Roch, M.A., Nosal, EM., Klinck, H. (2016). Signal Processing. In: Au, W., Lammers, M. (eds) Listening in the Ocean. Modern Acoustics and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3176-7_15

Download citation

Publish with us

Policies and ethics