Skip to main content

Cautions in Measuring In Vivo Interactions Using FRET and BiFC in Nicotiana benthamiana

  • Protocol
Plant Signal Transduction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1363))

Abstract

Bimolecular fluorescence complementation (BiFC) and Förster Resonance Energy Transfer (FRET) are two widely used techniques to investigate protein–protein interactions and subcellular compartmentalization of proteins in complexes. As of January 2015, there were 805 publications retrieved by PUBMED with the query “bimolecular fluorescence complementation” and 11,327 publications retrieved with the query “fluorescence resonance energy transfer”. Only a few of these publications describe studies of plant cells. Given the importance and popularity of these techniques, applying them correctly is crucial but unfortunately many studies lack proper controls and verifications. We describe (1) BiFC and FRET problems that are frequently encountered at different stages of the protocols, (2) how to use appropriate controls, and (3) how to apply plant transformation and imaging procedures. We provide step-by-step protocols for the beginner to obtain high quality, artifact-free BiFC and FRET data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pattanaik S, Werkman J, Yuan L (2011) Bimolecular fluorescence complementation as a tool to study interactions of regulatory proteins in plant protoplasts. Methods Mol Biol 754:185–193

    Article  CAS  PubMed  Google Scholar 

  2. Nickerson A, Huang T, Lin L-J, Nan X (2014) Photoactivated localization microscopy with Bimolecular Fluorescence Complementation (BiFC-PALM) for nanoscale imaging of protein-protein interactions in cells. PLoS One 9:e100589

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kodama Y, Hu C-D (2012) Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives. Biotechniques 53:285–298

    Article  CAS  PubMed  Google Scholar 

  4. Ohad N, Shichrur K, Yalovsky S (2007) The analysis of protein-protein interactions in plants by bimolecular fluorescence complementation. Plant Physiol 145:1090–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arai Y, Nagai T (2013) Extensive use of FRET in biological imaging. Reprod Syst Sex Disord 62:419–428

    CAS  Google Scholar 

  6. Goedhart J, Hink M, Jalink K (2014) An introduction to fluorescence imaging techniques geared towards biosensor applications. Methods Mol Biol 1071:17–28

    Article  CAS  PubMed  Google Scholar 

  7. Lakowicz J (2006) Principles of fluorescence spectroscopy. In: Energy transfer, 3rd edn. Springer, New York, NY, pp 443–475

    Google Scholar 

  8. Müller S, Galliardt H, Schneider J, Barisas B, Seidel T (2013) Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells. Front Plant Sci 4:413

    PubMed  PubMed Central  Google Scholar 

  9. Van Munster E, Kremers G, Adjobo-Hermans M, Gadella T (2005) Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching. J Microsc 218:253–262

    Article  PubMed  Google Scholar 

  10. Gu Y, Di W, Kelsell D, Zicha D (2004) Quantitative fluorescence resonance energy transfer (FRET) measurement with acceptor photobleaching and spectral unmixing. J Microsc 215:162–173

    Article  CAS  PubMed  Google Scholar 

  11. Domingo B, Sabariegos R, Picazo F, Llopis J (2007) Imaging FRET standards by steady-state fluorescence and lifetime methods. Microsc Res Tech 70:1010–1021

    Article  CAS  PubMed  Google Scholar 

  12. Boevink P, McLellan H, Bukharova T, Engelhardt S, Birch P (2014) In vivo protein-protein interaction studies with BiFC: conditions, cautions, and caveats. Methods Mol Biol 1127:81–90

    Article  CAS  PubMed  Google Scholar 

  13. Early KW, Haag JR, Pontes O, Opper K, Juehne T, Song K, Pikaard C (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J Feb;45(4):616–629

    Google Scholar 

  14. Laemmli U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  15. Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956

    Article  CAS  PubMed  Google Scholar 

  16. Friedman EJ, Wang HX, Jiang K, Perovic I, Deshpande A, Pochapsky TC, Temple BR, Hicks SN, Harden TK, Jones AM (2011) Acireductone dioxygenase 1 (ARD1) is an effector of the heterotrimeric G protein beta subunit in Arabidopsis. J Biol Chem 286:30107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gookin TE, Assmann SM (2014) Significant reduction of BiFC non-specific assembly facilitates in planta assessment of heterotrimeric G-protein interactors. Plant J 80(3):553–567. doi:10.1111/tpj.12639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wong K, O’Bryan J (2011) Bimolecular fluorescence complementation. J Vis Exp (50): 2643. doi: 10.3791/2643

  19. Sun Y, Rombola C, Jyothikumar V, Periasamy A (2013) Förster resonance energy transfer microscopy and spectroscopy for localizing protein-protein interactions in living cells. Cytometry 83:780–793

    Article  PubMed  PubMed Central  Google Scholar 

  20. Roszik J, Lisboa D, Szöllosi J, Vereb G (2009) Evaluation of intensity-based ratiometric FRET in image cytometry--approaches and a software solution. Cytometry A 75:761–767

    Article  PubMed  Google Scholar 

  21. Elangovan M, Wallrabe H, Chen Y, Day R, Barroso M, Periasamy A (2003) Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy. Methods 29:58–73

    Article  CAS  PubMed  Google Scholar 

  22. Feige J, Sage D, Wahli W, Desvergne B, Gelman L (2005) PixFRET, an ImageJ plug-in for FRET calculation that can accommodate variations in spectral bleed-throughs. Microsc Res Tech 68:51–58

    Article  CAS  PubMed  Google Scholar 

  23. Gordon GW, Berry G, Liang XH, Levine B, Herman B (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J 74(5):2702–2713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xia Z, Liu Y (2001) Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys J 81:2395–2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hachet-Haas M, Converset N, Marchal O, Matthes H, Gioria S, Galzi J-L, Lecat S (2006) FRET and colocalization analyzer--a method to validate measurements of sensitized emission FRET acquired by confocal microscopy and available as an ImageJ Plug-in. Microsc Res Tech 69:941–956

    Article  CAS  PubMed  Google Scholar 

  26. Widjaja I, Lassowskat I, Bethke G, Eschen-Lippold L, Long HH, Naumann K, Dangl JL, Scheel D, Lee J (2010) A protein phosphatase 2C, responsive to the bacterial effector AvrRpm1 but not to the AvrB effector, regulates defense responses in Arabidopsis. Plant J 61:249–258

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Tony Perdue for training and critical comments on the manuscript and Nguyen Phan for training on BiFC and FRET imaging. Financial support in the Jones Lab is provided by the National Science Foundation and the National Institutes of General Medicine. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy through the grant DE-FG02-05er15671 to A.M.J. funds technical support in the Jones Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan M. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tunc-Ozdemir, M., Fu, Y., Jones, A.M. (2016). Cautions in Measuring In Vivo Interactions Using FRET and BiFC in Nicotiana benthamiana . In: Botella, J., Botella, M. (eds) Plant Signal Transduction. Methods in Molecular Biology, vol 1363. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3115-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3115-6_13

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3114-9

  • Online ISBN: 978-1-4939-3115-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics