Skip to main content

Exact Methods for Multi-Objective Combinatorial Optimisation

  • Chapter
Multiple Criteria Decision Analysis

Abstract

In this chapter we consider multi-objective optimisation problems with a combinatorial structure. Such problems have a discrete feasible set and can be formulated as integer (usually binary) optimisation problems with multiple (integer valued) objectives. We focus on a review of exact methods to solve such problems. First, we provide definitions of the most important classes of solutions and explore properties of such problems and their solution sets. Then we discuss the most common approaches to solve multi-objective combinatorial optimisation problems. These approaches include extensions of single objective algorithms, scalarisation methods, the two-phase method and multi-objective branch and bound. For each of the approaches we provide references to specific algorithms found in the literature. We end the chapter with a description of some other algorithmic approaches for MOCO problems and conclusions suggesting directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aissi, H., Mahjoub, R., McCormick, S.T., Queyranne, M.: A strongly polynomial time algorithm for multicriteria global minimum cuts. In: Lee, J., Vygen, J. (eds.) Proceedings of 17th International Conference on Integer Programming and Combinatorial Optimization, IPCO 2014, Bonn, June 23–25, 2014. Lecture Notes in Computer Science, vol. 8494, pp. 25–36. Springer, Berlin (2014)

    Google Scholar 

  2. Aneja, Y.P., Nair, K.P.K.: Bicriteria transportation problem. Manag. Sci. 25, 73–78 (1979)

    Article  Google Scholar 

  3. Bazgan, C., Hugot, H., Vanderpooten, D.: Solving efficiently the 0–1 multi-objective knapsack problem. Comput. Oper. Res. 36, 260–279 (2009)

    Article  Google Scholar 

  4. Bazgan, C., Jamain, F., Vanderpooten, D.: Approximate Pareto sets of minimal size for multi-objective optimization problems. Oper. Res. Lett. 43, 1–6 (2015)

    Article  Google Scholar 

  5. Bellman, R.: On a routing problem. Q. Appl. Math. 16, 87–90 (1958)

    Google Scholar 

  6. Bérubé, J.-F., Gendreau, F., Potvin, J.-Y.: An exact ε-constraint method for bi-objective combinatorial optimization problems: application to he travelling slaesman problem with profits. Eur. J. Oper. Res. 194, 39–50 (2009)

    Article  Google Scholar 

  7. Blanco, V., Puerto, J.: Partial Gröbner bases for multiobjective integer linear ptimization. SIAM J. Discret. Math. 23, 571–595 (2009)

    Article  Google Scholar 

  8. Blanco, V., Puerto, J.: A new complexity result on multiobjective linear integer programming using short rational generating functions. Optim. Lett. 6, 537–543 (2012)

    Article  Google Scholar 

  9. Boland, N., Charkhgard, H., Savelsbergh, M.: The triangle splitting method for biobjective mixed integer programming. In: Lee, J., Vygen, J. (eds.) Proceedings of 17th International Conference on Integer Programming and Combinatorial Optimization, IPCO 2014, Bonn, June 23–25, 2014. Lecture Notes in Computer Science, vol. 8494, pp. 162–173. Springer, New York (2014)

    Google Scholar 

  10. Camerini, P.M., Galbiati, G., Maffioli, F.: The complexity of multi-constrained spanning tree problems. In: Lovasz, L. (ed.) Theory of Algorithms, pp. 53–101. North-Holland, Amsterdam (1984)

    Google Scholar 

  11. Chalmet, L.G., Lemonidis, L., Elzinga, D.J.: An algorithm for the bi-criterion integer programming problem. Eur. J. Oper. Res. 25, 292–300 (1986)

    Article  Google Scholar 

  12. Chegireddy, C.R., Hamacher, H.W.: Algorithms for finding k-best perfect matchings. Discret. Appl. Math. 18, 155–165 (1987)

    Article  Google Scholar 

  13. Cohon, J.L.: Multiobjective Programming and Planning. Academic Press, New York (1978)

    Google Scholar 

  14. Corley, H.W.: Efficient spanning trees. J. Optim. Theory Appl. 45, 481–485 (1985)

    Article  Google Scholar 

  15. Dächert, K., Klamroth, K.: A linear bound on the number of scalarizations needed to solve discrete tricriteria optimization problems. J. Glob. Optim. 61, 643–676 (2015)

    Article  Google Scholar 

  16. Dächert, K., Gorski, J., Klamroth, K.: An augmented weighted Tchebycheff method with adaptively chosen parameters for discrete bicriteria optimization problems. Comput. Oper. Res. 39, 2929–2943 (2012)

    Article  Google Scholar 

  17. Daellenbach, H.G., De Kluyver, C.A.: Note on multiple objective dynamic programming. J. Oper. Res. Soc. 31, 591–594 (1980)

    Article  Google Scholar 

  18. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)

    Google Scholar 

  19. Delort, C.: Algorithmes d’énumération implicite pour l’optimisation multi-objectifs: Exploitation d’ensembles bornant et application aux problèmes de sac à dos et d’affectation. Ph.D. thesis, Université Pierre et Marie Curie (Paris VI) (2011)

    Google Scholar 

  20. Delort, C., Spanjaard, O.: Using bound sets in multiobjective optimization: Application to the biobjective binary knapsack problem. In: Desta, P. (ed.) Proceedings of 9th International Symposium on Experimental Algorithms, SEA 2010, Ischia Island, Naples, March 20–22, 2010. Lecture Notes in Computer Science, vol. 6049, pp. 253–265. Springer, Heidelberg (2010)

    Google Scholar 

  21. Dial, R.: A model and algorithm for multicriteria route-mode choice. Transp. Res. B 13, 311–316 (1979)

    Article  Google Scholar 

  22. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  Google Scholar 

  23. Ehrgott, M.: On matroids with multiple objectives. Optimization 38, 73–84 (1996)

    Article  Google Scholar 

  24. Ehrgott, M.: A discussion of scalarization techniques for multiobjective integer programming. Ann. Oper. Res. 147, 343–360 (2005)

    Article  Google Scholar 

  25. Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Berlin (2005)

    Google Scholar 

  26. Ehrgott, M., Gandibleux, X.: Bounds and bound sets for biobjective combinatorial optimization problems. In: Köksalan, M., Zionts, St. (eds.) Multiple Criteria Decision Making in the New Millennium. Lectures Notes in Economics and Mathematical Systems, vol. 507, pp. 241–253. Springer, Berlin (2001)

    Chapter  Google Scholar 

  27. Ehrgott, M., Gandibleux, X.: Bound sets for biobjective combinatorial optimization problems. Comput. Oper. Res. 34, 2674–2694 (2007)

    Article  Google Scholar 

  28. Ehrgott, M., Klamroth, K.: Connectedness of efficient solutions in multiple criteria combinatorial optimization. Eur. J. Oper. Res. 97(1), 159–166 (1997)

    Article  Google Scholar 

  29. Ehrgott, M., Ryan, D.M.: Constructing robust crew schedules with bicriteria optimization. J. Multi-Criteria Decis. Anal. 11, 139–150 (2002)

    Article  Google Scholar 

  30. Ehrgott, M., Ryan, D.M.: The method of elastic constraints for multiobjective combinatorial optimization and its application in airline crew scheduling. In: Tanino, T., Tanaka, T., Inuiguchi, M. (eds.) Multi-Objective Programming and Goal-Programming: Theory and Applications. Advances in Soft Computing, vol. 21, pp. 117–122. Springer, Berlin (2003)

    Chapter  Google Scholar 

  31. Ehrgott, M., Tenfelde-Podehl, D.: Computation of ideal and nadir values and implications for their use in MCDM methods. Eur. J. Oper. Res. 151, 119–131 (2003)

    Article  Google Scholar 

  32. Emelichev, V.A., Perepelitsa, V.A.: On cardinality of the set of alternatives in discrete many-criterion problems. Discret. Math. Appl. 2, 461–471 (1992)

    Google Scholar 

  33. Eusébio, A., Figuiera, J.R.: Finding non-dominated solutions in bi-objective integer network flow problems. Comput. Oper. Res. 36, 2554–2564 (2009)

    Article  Google Scholar 

  34. Florios, K., Mavrotas, G., Diakoulaki, D.: Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms. Eur. J. Oper. Res. 203, 14–21 (2010)

    Article  Google Scholar 

  35. Fukuda, K., Matsui, T.: Finding all the perfect matchings in bipartite graphs. Networks 22, 461–468 (1992)

    Article  Google Scholar 

  36. Gorski, J., Paquete, L., Pedrosa, F.: Greedy algorithms for a class of knapsack problems with binary weights. Comput. Oper. Res. 39, 498–511 (2012)

    Article  Google Scholar 

  37. Hamacher, H.W., Ruhe, G.: On spanning tree problems with multiple objectives. Ann. Oper. Res. 52, 209–230 (1994)

    Article  Google Scholar 

  38. Hansen, P.: Bicriterion path problems. In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making Theory and Application. Lecture Notes in Economics and Mathematical Systems, vol. 177, pp. 109–127. Springer, Berlin (1979)

    Chapter  Google Scholar 

  39. Iori, M., Martello, S., Pretolani, D.:An aggregate label setting policy for the multi-objective shortest path problem. Eur. J. Oper. Res. 207, 1489–1496 (2010)

    Google Scholar 

  40. Jorge, J.: Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires. Ph.D. thesis, Université de Nantes (2010)

    Google Scholar 

  41. Jozefowiez, N., Semet, F., Talbi, E.-G.: The bi-objective covering tour problem. Comput. Oper. Res. 34, 1929–1942 (2007)

    Article  Google Scholar 

  42. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Chapter  Google Scholar 

  43. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)

    Book  Google Scholar 

  44. Kirlik, G., Sayin, S.: A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems. Eur. J. Oper. Res. 232, 479–488 (2014)

    Article  Google Scholar 

  45. Kiziltan, G., Yucaoglu, E.: An algorithm for multiobjective zero-one linear programming. Manag. Sci. 29, 1444–1453 (1983)

    Article  Google Scholar 

  46. Klamroth, K., Lacour, R., Vanderpooten, D.: On the representation of the search region in multi-objective optimization. Eur. J. Oper. Res. 245(3), 767–778 (2015)

    Article  Google Scholar 

  47. Klein, D., Hannan, E.: An algorithm for the multiple objective integer linear programming problem. Eur. J. Oper. Res. 9, 378–385 (1982)

    Article  Google Scholar 

  48. Kouvelis, P., Carlson, R.C.: Total unimodularity applications in bi-objective discrete optimization. Oper. Res. Lett. 11, 61–65 (1992)

    Article  Google Scholar 

  49. Kruskal, J.B.: On the shortest spanning subtree of a graph and the travelling salesman problem. Proc. Am. Math. Soc. 7, 48–50 (1956)

    Article  Google Scholar 

  50. Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. 2, 83–97 (1955)

    Article  Google Scholar 

  51. Laumanns, M., Thiele, L., Zitzler, E.: An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method. Eur. J. Oper. Res. 169, 932–942 (2006)

    Article  Google Scholar 

  52. Lee, H., Pulat, P.S.: Bicriteria network flow problems: Integer case. Eur. J. Oper. Res. 66, 148–157 (1993)

    Article  Google Scholar 

  53. Lokman, B., Köksalan, M.: Finding all nondominated points of multi-objective integer programs. J. Glob. Optim. 57, 347–365 (2013)

    Article  Google Scholar 

  54. Mavrotas, G., Diakoulaki, D.: A branch and bound algorithm for mixed zero-one multiple objective linear programming. Eur. J. Oper. Res. 107(3), 530–541 (1998)

    Article  Google Scholar 

  55. Mavrotas, G., Diakoulaki, D.: Multi-criteria branch and bound: a vector maximization algorithm for mixed 0–1 multiple objective linear programming. Appl. Math. Comput. 171(3), 53–71 (2005)

    Google Scholar 

  56. Mavrotas, G., Florios, K.: An improved version of the augmented ε-constraint method (augmecon2) for finding the exact pareto set in multi-objective integer programming problems. Appl. Math. Comput. 219, 9652–9669 (2013)

    Google Scholar 

  57. Mavrotas, G., Figueira, J.R., Florios, K.: Solving the bi-objective multi-dimensional knapsack problem exploiting the concept of core. Appl. Math. Comput. 215, 2502–2514 (2009)

    Google Scholar 

  58. Mezmaz, M., Melab, N., Talbi, E.G.: A grid-based parallel approach of the multi-objective branch and bound. In: 15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP07), Napoli, pp. 23–27 (2007). IEEE, New York (2007). doi:10.1109/PDP.2007.7

    Google Scholar 

  59. Mote, J., Murthy, I., Olson, D.L.: A parametric approach to solving bicriterion shortest path problems. Eur. J. Oper. Res. 53, 81–92 (1991)

    Article  Google Scholar 

  60. Müller-Hannemann, M., Weihe, K.: On the cardinality of the Pareto set in bicriteria shortest path problems. Ann. Oper. Res. 147, 269–286 (2006)

    Article  Google Scholar 

  61. Neumayer, P.: Complexity of optimization on vectorweighted graphs. In: Bachem, A., Derigs, U., Jünger, M., Schrader, R. (eds.) Operations Research, vol. 93, pp. 359–361. Physica Verlag, Heidelberg (1994)

    Google Scholar 

  62. Özlen, M., Azizoglu, M.: Multi-objective integer programming: a general approach for generating all non-dominated solutions. Eur. J. Oper. Res. 199, 25–35 (2009)

    Article  Google Scholar 

  63. Ozlen, M., Burton, B.A., MacRae, C.A.G.: Multi-objective integer programming: An improved recursive algorithm. J. Optim. Theory Appl. 160, 470–482 (2014)

    Article  Google Scholar 

  64. Özpeynirci, Ö., Köksalan, M.: An exact algorithm for finding extreme supported nondominated points of multiobjective mixed integer programs. Manag. Sci. 56, 2302–2315 (2010)

    Article  Google Scholar 

  65. Paixão, J.M., Santos, J.L.: Labeling methods for the general case of the multi-objective shortest path problem—a computational study. In: Madureira, A., Reis, C., Marques, V. (eds.) Computational Intelligence and Decision Making: Trends and Applications. Intelligent Systems, Control and Automation: Science and Engineering, vol. 61, pp. 489–502. Springer, New York (2013)

    Google Scholar 

  66. Paquete, L., Jaschob, M., Klamroth, K., Gorski, J.: On a biobjective search problem in a line: formulations and algorithms. Theor. Comput. Sci. 507, 61–71 (2013)

    Article  Google Scholar 

  67. Pedersen, C.R., Nielsen, L.R., Andersen, K.A.: The bicriterion multi modal assignment problem: introduction, analysis, and experimental results. INFORMS J. Comput. 20, 400–411 (2008)

    Article  Google Scholar 

  68. Prim, J.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36, 1389–1401 (1957)

    Article  Google Scholar 

  69. Przybylski, A., Gandibleux, X., Ehrgott, M.: The biobjective integer minimum cost flow problem—Incorrectness of Sedeõ-Noda and Gonzàlez-Martin’s algorithm. Comput. Oper. Res. 33, 1459–1463 (2006)

    Article  Google Scholar 

  70. Przybylski, A., Gandibleux, X., Ehrgott, M.: Computational results for four exact methods to solve the three-objective assignment problem. In: Barichard, V., Ehrgott, M., Gandibleux, X., T’Kindt, V. (eds.) Multiple Objective Programming and Goal Programming: Theoretical Results and Practical Applications. Lecture Notes in Economics and Mathematical Systems, vol. 618, pp. 79–88. Springer, Berlin (2008)

    Google Scholar 

  71. Przybylski, A., Gandibleux, X., Ehrgott, M.: Two phase algorithms for the bi-objective assignment problem. Eur. J. Oper. Res. 185, 509–533 (2008)

    Article  Google Scholar 

  72. Przybylski, A., Gandibleux, X., Ehrgott, M.: A recursive algorithms for finding all nondominated extreme points in the outcome set of a multiobjective integer program. INFORMS J. Comput. 22, 371–386 (2010)

    Article  Google Scholar 

  73. Przybylski, A., Gandibleux, X., Ehrgott, M.: A two phase method for multi-objective integer programming and its application to the assignment problem with three objectives. Discret. Optim. 7, 149–165 (2010)

    Article  Google Scholar 

  74. Przybylski, A., Gandibleux, X., Ehrgott, M.: The two-phase method for multiobjective combinatorial optimization problem. In: Majoub, R. (ed.) Progress in Combinatorial Optimization, pp. 559–596. ISTE Wiley, London (2011)

    Google Scholar 

  75. Raith, A., Ehrgott, M.: A comparison of solution strategies for biobjective shortest path problems. Comput. Oper. Res. 36, 1299–1331 (2009)

    Article  Google Scholar 

  76. Raith, A., Ehrgott, M.: A two-phase algorithm for the biobjective integer minimum cost flow problem. Comput. Oper. Res. 36, 1945–1954 (2009)

    Article  Google Scholar 

  77. Ralphs, T.K., Saltzmann, M.J., Wiecek, M.M.: An improved algorithm for solving biobjective integer programs. Ann. Oper. Res. 147, 43–70 (2006)

    Article  Google Scholar 

  78. Ramos, R.M., Alonso, S., Sicilia, J., González, C.: The problem of the optimal biobjective spanning tree. Eur. J. Oper. Res. 111, 617–628 (1998)

    Article  Google Scholar 

  79. Reinhardt, L.B., Pisinger, D.: Multi-objective and multi-constrained non-additive shortest path problems. Comput. Oper. Res. 38, 605–616 (2011)

    Article  Google Scholar 

  80. Rong, A., Figueira, J.R.: Computational performance of basic state reduction based dynamic programming algorithms for bi-objective 0–1 knapsack problems. Comput. Math. Appl. 63, 1462–1480 (2012)

    Article  Google Scholar 

  81. Ruhe, G.: Complexity results for multicriteria and parametric network flows using a pathological graph of Zadeh. Z. Oper. Res. 32,9–27 (1988)

    Google Scholar 

  82. Ruzika, S.: On multipe objective combinatorial optimization. Ph.D. thesis, Department of Mathematics, Technical University of Kaiserslautern (2007)

    Google Scholar 

  83. Ruzika, S., Hamacher, H.W.: A survey on multiple objective minimum spanning tree problems. In: Lerner, D., Wagner, D., Zweig, K.A. (eds.) Algorithmics. Lecture Notes in Computer Science, vol. 5515, pp. 104–116. Springer, Heidelberg (2009)

    Google Scholar 

  84. Sanders, P., Mandow, L.: Parallel label-setting multi-objective shortest path search. In: 2013 IEEE 27th International Symposium on Parallel & Distributed Processing (IPDPS), pp. 215–224. IEEE, New York (2013)

    Google Scholar 

  85. Sayin, S., Kouvelis, P.: The multiobjective discrete optimization problem: a weighted min-max two-stage optimization approach and a bicriteria algorithm. Manag. Sci. 51, 1572–1581 (2005)

    Article  Google Scholar 

  86. Sedeño-Noda, A., González-Martín, C.: An algorithm for the biobjective integer minimum cost flow problem. Comput. Oper. Res. 28, 139–156 (2001)

    Article  Google Scholar 

  87. Sedeño-Noda, A., González-Martín, C.: An efficient label setting/correcting shortest path algorithm. Comput. Optim. Appl. 51, 437–455 (2012)

    Article  Google Scholar 

  88. Sedeño-Noda, A., Raith, A.: A Dijkstra-like method computing all extreme supported non-dominated solutions of the biobjective sortest path problem. Comput. Oper. Res. 57, 83–94 (2015)

    Article  Google Scholar 

  89. Serafini, P.: Some considerations about computational complexity for multi objective combinatorial problems. In: Jahn, J., Krabs, W. (eds.) Recent Advances and Historical Development of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 294, pp. 222–232. Springer, Berlin (1986)

    Chapter  Google Scholar 

  90. Sourd, F., Spanjaard, O.: A multiobjective branch-and-bound framework: application to the biobjective spanning tree problem. INFORMS J. Comput. 20, 472–484 (2008)

    Article  Google Scholar 

  91. Stanojević, M., Vujosevic, M., Stanojević, B.: On the cardinality of the nondominated set of multi-objective combinatorial optimization problems. Oper. Res. Lett. 41, 197–200 (2013)

    Article  Google Scholar 

  92. Steiner, S., Radzik, T.: Computing all efficient solutions of the biobjective minimum spanning tree problem. Comput. Oper. Res. 35, 198–211 (2008)

    Article  Google Scholar 

  93. Sylva, J., Crema, A.: A method for finding the set of non-dominated vectors for multiple objective integer linear programs. Eur. J. Oper. Res. 158, 46–55 (2004)

    Article  Google Scholar 

  94. Tam, B., Ryan, D., Ehrgott, M.: Multi-objective approaches to the unit crewing problem in airline crew scheduling. J. Multi-Criteria Decis. Anal. 21, 257–277 (2014)

    Article  Google Scholar 

  95. Tarapata, Z.: Selected multicriteria shortest path problems: an analysis of complexity, models and adaptation of standrad algorithms. Int. J. Appl. Math. Comput. Sci. 1, 269–287 (2007)

    Google Scholar 

  96. Tuyttens, D., Teghem, J., Fortemps, P., Van Nieuwenhuyse, K.: Performance of the MOSA method for the bicriteria assignment problem. J. Heuristics 6, 295–310 (2000)

    Article  Google Scholar 

  97. Ulungu, E.L., Teghem, J.: The two phases method: an efficient procedure to solve bi-objective combinatorial optimization problems. Found. Comput. Decis. Sci. 20, 149–165 (1995)

    Google Scholar 

  98. Ulungu, E.L., Teghem, J.: Solving multi-objective knapsack problem by a branch-and-bound procedure. In: Climaco, J. (ed.) Multicriteria Analysis, pp. 269–278. Springer, Berlin (1997)

    Google Scholar 

  99. Villarreal, B., Karwan, M.H.: Multicriteria integer programming: a (hybrid) dynamic programming recursive approach. Math. Program. 21, 204–223 (1981)

    Article  Google Scholar 

  100. Vincent, T., Seipp, F., Ruzika, S., Przybylski, A., Gandibleux, X.: Multiple objective branch and bound for mixed 0–1 linear programming: corrections and improvements for the biobjective case. Comput. Oper. Res. 40, 498–509 (2013)

    Article  Google Scholar 

  101. Visée, M., Teghem, J., Pirlot, M., Ulungu, E.L.: Two-phases method and branch and bound procedures to solve the bi-obective knapsack problem. J. Glob. Optim. 12, 139–155 (1998)

    Article  Google Scholar 

  102. Welsh, D.J.A.: Complexity: Knots, Colourings and Counting. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  103. Wierzbicki, A.P.: On the completeness and constructiveness of parametric characterizations to vector optimization problems. OR-Spektrum 8, 73–87 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Ehrgott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ehrgott, M., Gandibleux, X., Przybylski, A. (2016). Exact Methods for Multi-Objective Combinatorial Optimisation. In: Greco, S., Ehrgott, M., Figueira, J. (eds) Multiple Criteria Decision Analysis. International Series in Operations Research & Management Science, vol 233. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3094-4_19

Download citation

Publish with us

Policies and ethics